1 /**************************************************************************
3 * Etherboot driver for Level 5 Etherfabric network cards
5 * Written by Michael Brown <mbrown@fensystems.co.uk>
7 * Copyright Fen Systems Ltd. 2005
8 * Copyright Level 5 Networks Inc. 2005
10 * This software may be used and distributed according to the terms of
11 * the GNU General Public License (GPL), incorporated herein by
12 * reference. Drivers based on or derived from this code fall under
13 * the GPL and must retain the authorship, copyright and license
16 **************************************************************************
19 #include "etherboot.h"
22 #include <gpxe/bitbash.h>
25 #define dma_addr_t unsigned long
26 #include "etherfabric.h"
28 /**************************************************************************
30 * Constants and macros
32 **************************************************************************
35 #define EFAB_ASSERT(x) \
38 DBG ( "ASSERT(%s) failed at %s line %d [%s]\n", #x, \
39 __FILE__, __LINE__, __FUNCTION__ ); \
43 #define EFAB_TRACE(...)
45 #define EFAB_REGDUMP(...)
47 #define FALCON_USE_IO_BAR 1
50 * EtherFabric constants
55 #define EFAB_VENDID_LEVEL5 0x1924
56 #define FALCON_P_DEVID 0x0703 /* Temporary PCI ID */
57 #define EF1002_DEVID 0xC101
59 /**************************************************************************
63 **************************************************************************
67 * Buffers used for TX, RX and event queue
70 #define EFAB_BUF_ALIGN 4096
71 #define EFAB_DATA_BUF_SIZE 2048
72 #define EFAB_RX_BUFS 16
73 #define EFAB_RXD_SIZE 512
74 #define EFAB_TXD_SIZE 512
75 #define EFAB_EVQ_SIZE 512
80 uint8_t tx_buf[EFAB_DATA_BUF_SIZE];
81 uint8_t rx_buf[EFAB_RX_BUFS][EFAB_DATA_BUF_SIZE];
82 uint8_t padding[EFAB_BUF_ALIGN-1];
84 static struct efab_buffers efab_buffers;
100 /** Etherfabric event type */
101 enum efab_event_type {
107 /** Etherfabric event */
110 enum efab_event_type type;
118 * Etherfabric abstraction layer
122 struct efab_operations {
123 void ( * get_membase ) ( struct efab_nic *efab );
124 int ( * reset ) ( struct efab_nic *efab );
125 int ( * init_nic ) ( struct efab_nic *efab );
126 int ( * read_eeprom ) ( struct efab_nic *efab );
127 void ( * build_rx_desc ) ( struct efab_nic *efab,
128 struct efab_rx_buf *rx_buf );
129 void ( * notify_rx_desc ) ( struct efab_nic *efab );
130 void ( * build_tx_desc ) ( struct efab_nic *efab,
131 struct efab_tx_buf *tx_buf );
132 void ( * notify_tx_desc ) ( struct efab_nic *efab );
133 int ( * fetch_event ) ( struct efab_nic *efab,
134 struct efab_event *event );
135 void ( * mask_irq ) ( struct efab_nic *efab, int enabled );
136 void ( * generate_irq ) ( struct efab_nic *efab );
137 void ( * mac_writel ) ( struct efab_nic *efab, efab_dword_t *value,
138 unsigned int mac_reg );
139 void ( * mac_readl ) ( struct efab_nic *efab, efab_dword_t *value,
140 unsigned int mac_reg );
141 int ( * init_mac ) ( struct efab_nic *efab );
142 void ( * mdio_write ) ( struct efab_nic *efab, int location,
144 int ( * mdio_read ) ( struct efab_nic *efab, int location );
148 * Driver private data structure
154 struct pci_device *pci;
156 /** Operations table */
157 struct efab_operations *op;
166 uint8_t *eventq; /* Falcon only */
167 uint8_t *txd; /* Falcon only */
168 uint8_t *rxd; /* Falcon only */
169 struct efab_tx_buf tx_buf;
170 struct efab_rx_buf rx_bufs[EFAB_RX_BUFS];
172 /** Buffer pointers */
173 unsigned int eventq_read_ptr; /* Falcon only */
174 unsigned int tx_write_ptr;
175 unsigned int rx_write_ptr;
178 /** Port 0/1 on the NIC */
182 uint8_t mac_addr[ETH_ALEN];
183 /** GMII link options */
184 unsigned int link_options;
188 /** INT_REG_KER for Falcon */
189 efab_oword_t int_ker __attribute__ (( aligned ( 16 ) ));
192 struct i2c_bit_basher ef1002_i2c;
193 unsigned long ef1002_i2c_outputs;
194 struct i2c_device ef1002_eeprom;
197 /**************************************************************************
201 **************************************************************************
205 #define MII_BMSR 0x01 /* Basic mode status register */
206 #define MII_ADVERTISE 0x04 /* Advertisement control register */
207 #define MII_LPA 0x05 /* Link partner ability register*/
208 #define GMII_GTCR 0x09 /* 1000BASE-T control register */
209 #define GMII_GTSR 0x0a /* 1000BASE-T status register */
210 #define GMII_PSSR 0x11 /* PHY-specific status register */
212 /* Basic mode status register. */
213 #define BMSR_LSTATUS 0x0004 /* Link status */
215 /* Link partner ability register. */
216 #define LPA_10HALF 0x0020 /* Can do 10mbps half-duplex */
217 #define LPA_10FULL 0x0040 /* Can do 10mbps full-duplex */
218 #define LPA_100HALF 0x0080 /* Can do 100mbps half-duplex */
219 #define LPA_100FULL 0x0100 /* Can do 100mbps full-duplex */
220 #define LPA_100BASE4 0x0200 /* Can do 100mbps 4k packets */
221 #define LPA_PAUSE 0x0400 /* Bit 10 - MAC pause */
223 /* Pseudo extensions to the link partner ability register */
224 #define LPA_1000FULL 0x00020000
225 #define LPA_1000HALF 0x00010000
227 #define LPA_100 (LPA_100FULL | LPA_100HALF | LPA_100BASE4)
228 #define LPA_1000 ( LPA_1000FULL | LPA_1000HALF )
229 #define LPA_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_1000FULL )
231 /* Mask of bits not associated with speed or duplexity. */
232 #define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
233 LPA_100HALF | LPA_1000FULL | LPA_1000HALF )
235 /* PHY-specific status register */
236 #define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */
239 * Retrieve GMII autonegotiation advertised abilities
242 static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) {
243 unsigned int mii_advertise;
244 unsigned int gmii_advertise;
246 /* Extended bits are in bits 8 and 9 of GMII_GTCR */
247 mii_advertise = efab->op->mdio_read ( efab, MII_ADVERTISE );
248 gmii_advertise = ( ( efab->op->mdio_read ( efab, GMII_GTCR ) >> 8 )
250 return ( ( gmii_advertise << 16 ) | mii_advertise );
254 * Retrieve GMII autonegotiation link partner abilities
257 static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) {
258 unsigned int mii_lpa;
259 unsigned int gmii_lpa;
261 /* Extended bits are in bits 10 and 11 of GMII_GTSR */
262 mii_lpa = efab->op->mdio_read ( efab, MII_LPA );
263 gmii_lpa = ( efab->op->mdio_read ( efab, GMII_GTSR ) >> 10 ) & 0x03;
264 return ( ( gmii_lpa << 16 ) | mii_lpa );
268 * Calculate GMII autonegotiated link technology
271 static unsigned int gmii_nway_result ( unsigned int negotiated ) {
272 unsigned int other_bits;
274 /* Mask out the speed and duplexity bits */
275 other_bits = negotiated & LPA_OTHER;
277 if ( negotiated & LPA_1000FULL )
278 return ( other_bits | LPA_1000FULL );
279 else if ( negotiated & LPA_1000HALF )
280 return ( other_bits | LPA_1000HALF );
281 else if ( negotiated & LPA_100FULL )
282 return ( other_bits | LPA_100FULL );
283 else if ( negotiated & LPA_100BASE4 )
284 return ( other_bits | LPA_100BASE4 );
285 else if ( negotiated & LPA_100HALF )
286 return ( other_bits | LPA_100HALF );
287 else if ( negotiated & LPA_10FULL )
288 return ( other_bits | LPA_10FULL );
289 else return ( other_bits | LPA_10HALF );
293 * Check GMII PHY link status
296 static int gmii_link_ok ( struct efab_nic *efab ) {
300 /* BMSR is latching - it returns "link down" if the link has
301 * been down at any point since the last read. To get a
302 * real-time status, we therefore read the register twice and
303 * use the result of the second read.
305 efab->op->mdio_read ( efab, MII_BMSR );
306 status = efab->op->mdio_read ( efab, MII_BMSR );
308 /* Read the PHY-specific Status Register. This is
309 * non-latching, so we need do only a single read.
311 phy_status = efab->op->mdio_read ( efab, GMII_PSSR );
313 return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
316 /**************************************************************************
320 **************************************************************************
324 * Initialise Alaska PHY
327 static void alaska_init ( struct efab_nic *efab ) {
328 unsigned int advertised, lpa;
330 /* Read link up status */
331 efab->link_up = gmii_link_ok ( efab );
333 if ( ! efab->link_up )
336 /* Determine link options from PHY. */
337 advertised = gmii_autoneg_advertised ( efab );
338 lpa = gmii_autoneg_lpa ( efab );
339 efab->link_options = gmii_nway_result ( advertised & lpa );
341 printf ( "%dMbps %s-duplex (%04x,%04x)\n",
342 ( efab->link_options & LPA_1000 ? 1000 :
343 ( efab->link_options & LPA_100 ? 100 : 10 ) ),
344 ( efab->link_options & LPA_DUPLEX ? "full" : "half" ),
348 /**************************************************************************
352 **************************************************************************
355 /* GMAC configuration register 1 */
356 #define GM_CFG1_REG_MAC 0x00
357 #define GM_SW_RST_LBN 31
358 #define GM_SW_RST_WIDTH 1
359 #define GM_RX_FC_EN_LBN 5
360 #define GM_RX_FC_EN_WIDTH 1
361 #define GM_TX_FC_EN_LBN 4
362 #define GM_TX_FC_EN_WIDTH 1
363 #define GM_RX_EN_LBN 2
364 #define GM_RX_EN_WIDTH 1
365 #define GM_TX_EN_LBN 0
366 #define GM_TX_EN_WIDTH 1
368 /* GMAC configuration register 2 */
369 #define GM_CFG2_REG_MAC 0x01
370 #define GM_PAMBL_LEN_LBN 12
371 #define GM_PAMBL_LEN_WIDTH 4
372 #define GM_IF_MODE_LBN 8
373 #define GM_IF_MODE_WIDTH 2
374 #define GM_PAD_CRC_EN_LBN 2
375 #define GM_PAD_CRC_EN_WIDTH 1
377 #define GM_FD_WIDTH 1
379 /* GMAC maximum frame length register */
380 #define GM_MAX_FLEN_REG_MAC 0x04
381 #define GM_MAX_FLEN_LBN 0
382 #define GM_MAX_FLEN_WIDTH 16
384 /* GMAC MII management configuration register */
385 #define GM_MII_MGMT_CFG_REG_MAC 0x08
386 #define GM_MGMT_CLK_SEL_LBN 0
387 #define GM_MGMT_CLK_SEL_WIDTH 3
389 /* GMAC MII management command register */
390 #define GM_MII_MGMT_CMD_REG_MAC 0x09
391 #define GM_MGMT_SCAN_CYC_LBN 1
392 #define GM_MGMT_SCAN_CYC_WIDTH 1
393 #define GM_MGMT_RD_CYC_LBN 0
394 #define GM_MGMT_RD_CYC_WIDTH 1
396 /* GMAC MII management address register */
397 #define GM_MII_MGMT_ADR_REG_MAC 0x0a
398 #define GM_MGMT_PHY_ADDR_LBN 8
399 #define GM_MGMT_PHY_ADDR_WIDTH 5
400 #define GM_MGMT_REG_ADDR_LBN 0
401 #define GM_MGMT_REG_ADDR_WIDTH 5
403 /* GMAC MII management control register */
404 #define GM_MII_MGMT_CTL_REG_MAC 0x0b
405 #define GM_MGMT_CTL_LBN 0
406 #define GM_MGMT_CTL_WIDTH 16
408 /* GMAC MII management status register */
409 #define GM_MII_MGMT_STAT_REG_MAC 0x0c
410 #define GM_MGMT_STAT_LBN 0
411 #define GM_MGMT_STAT_WIDTH 16
413 /* GMAC MII management indicators register */
414 #define GM_MII_MGMT_IND_REG_MAC 0x0d
415 #define GM_MGMT_BUSY_LBN 0
416 #define GM_MGMT_BUSY_WIDTH 1
418 /* GMAC station address register 1 */
419 #define GM_ADR1_REG_MAC 0x10
420 #define GM_HWADDR_5_LBN 24
421 #define GM_HWADDR_5_WIDTH 8
422 #define GM_HWADDR_4_LBN 16
423 #define GM_HWADDR_4_WIDTH 8
424 #define GM_HWADDR_3_LBN 8
425 #define GM_HWADDR_3_WIDTH 8
426 #define GM_HWADDR_2_LBN 0
427 #define GM_HWADDR_2_WIDTH 8
429 /* GMAC station address register 2 */
430 #define GM_ADR2_REG_MAC 0x11
431 #define GM_HWADDR_1_LBN 24
432 #define GM_HWADDR_1_WIDTH 8
433 #define GM_HWADDR_0_LBN 16
434 #define GM_HWADDR_0_WIDTH 8
436 /* GMAC FIFO configuration register 0 */
437 #define GMF_CFG0_REG_MAC 0x12
438 #define GMF_FTFENREQ_LBN 12
439 #define GMF_FTFENREQ_WIDTH 1
440 #define GMF_STFENREQ_LBN 11
441 #define GMF_STFENREQ_WIDTH 1
442 #define GMF_FRFENREQ_LBN 10
443 #define GMF_FRFENREQ_WIDTH 1
444 #define GMF_SRFENREQ_LBN 9
445 #define GMF_SRFENREQ_WIDTH 1
446 #define GMF_WTMENREQ_LBN 8
447 #define GMF_WTMENREQ_WIDTH 1
449 /* GMAC FIFO configuration register 1 */
450 #define GMF_CFG1_REG_MAC 0x13
451 #define GMF_CFGFRTH_LBN 16
452 #define GMF_CFGFRTH_WIDTH 5
453 #define GMF_CFGXOFFRTX_LBN 0
454 #define GMF_CFGXOFFRTX_WIDTH 16
456 /* GMAC FIFO configuration register 2 */
457 #define GMF_CFG2_REG_MAC 0x14
458 #define GMF_CFGHWM_LBN 16
459 #define GMF_CFGHWM_WIDTH 6
460 #define GMF_CFGLWM_LBN 0
461 #define GMF_CFGLWM_WIDTH 6
463 /* GMAC FIFO configuration register 3 */
464 #define GMF_CFG3_REG_MAC 0x15
465 #define GMF_CFGHWMFT_LBN 16
466 #define GMF_CFGHWMFT_WIDTH 6
467 #define GMF_CFGFTTH_LBN 0
468 #define GMF_CFGFTTH_WIDTH 6
470 /* GMAC FIFO configuration register 4 */
471 #define GMF_CFG4_REG_MAC 0x16
472 #define GMF_HSTFLTRFRM_PAUSE_LBN 12
473 #define GMF_HSTFLTRFRM_PAUSE_WIDTH 12
475 /* GMAC FIFO configuration register 5 */
476 #define GMF_CFG5_REG_MAC 0x17
477 #define GMF_CFGHDPLX_LBN 22
478 #define GMF_CFGHDPLX_WIDTH 1
479 #define GMF_CFGBYTMODE_LBN 19
480 #define GMF_CFGBYTMODE_WIDTH 1
481 #define GMF_HSTDRPLT64_LBN 18
482 #define GMF_HSTDRPLT64_WIDTH 1
483 #define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
484 #define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1
486 struct efab_mentormac_parameters {
498 static void mentormac_reset ( struct efab_nic *efab, int reset ) {
501 EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, reset );
502 efab->op->mac_writel ( efab, ®, GM_CFG1_REG_MAC );
505 if ( ( ! reset ) && ( efab->port == 0 ) ) {
506 /* Configure GMII interface so PHY is accessible.
507 * Note that GMII interface is connected only to port
510 EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
511 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CFG_REG_MAC );
517 * Initialise Mentor MAC
520 static void mentormac_init ( struct efab_nic *efab,
521 struct efab_mentormac_parameters *params ) {
522 int pause, if_mode, full_duplex, bytemode, half_duplex;
525 /* Configuration register 1 */
526 pause = ( efab->link_options & LPA_PAUSE ) ? 1 : 0;
527 if ( ! ( efab->link_options & LPA_DUPLEX ) ) {
528 /* Half-duplex operation requires TX flow control */
531 EFAB_POPULATE_DWORD_4 ( reg,
536 efab->op->mac_writel ( efab, ®, GM_CFG1_REG_MAC );
539 /* Configuration register 2 */
540 if_mode = ( efab->link_options & LPA_1000 ) ? 2 : 1;
541 full_duplex = ( efab->link_options & LPA_DUPLEX ) ? 1 : 0;
542 EFAB_POPULATE_DWORD_4 ( reg,
546 GM_PAMBL_LEN, 0x7 /* ? */ );
547 efab->op->mac_writel ( efab, ®, GM_CFG2_REG_MAC );
550 /* Max frame len register */
551 EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, ETH_FRAME_LEN );
552 efab->op->mac_writel ( efab, ®, GM_MAX_FLEN_REG_MAC );
555 /* FIFO configuration register 0 */
556 EFAB_POPULATE_DWORD_5 ( reg,
562 efab->op->mac_writel ( efab, ®, GMF_CFG0_REG_MAC );
565 /* FIFO configuration register 1 */
566 EFAB_POPULATE_DWORD_2 ( reg,
567 GMF_CFGFRTH, params->gmf_cfgfrth,
568 GMF_CFGXOFFRTX, 0xffff );
569 efab->op->mac_writel ( efab, ®, GMF_CFG1_REG_MAC );
572 /* FIFO configuration register 2 */
573 EFAB_POPULATE_DWORD_2 ( reg,
574 GMF_CFGHWM, params->gmf_cfghwm,
575 GMF_CFGLWM, params->gmf_cfglwm );
576 efab->op->mac_writel ( efab, ®, GMF_CFG2_REG_MAC );
579 /* FIFO configuration register 3 */
580 EFAB_POPULATE_DWORD_2 ( reg,
581 GMF_CFGHWMFT, params->gmf_cfghwmft,
582 GMF_CFGFTTH, params->gmf_cfgftth );
583 efab->op->mac_writel ( efab, ®, GMF_CFG3_REG_MAC );
586 /* FIFO configuration register 4 */
587 EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
588 efab->op->mac_writel ( efab, ®, GMF_CFG4_REG_MAC );
591 /* FIFO configuration register 5 */
592 bytemode = ( efab->link_options & LPA_1000 ) ? 1 : 0;
593 half_duplex = ( efab->link_options & LPA_DUPLEX ) ? 0 : 1;
594 efab->op->mac_readl ( efab, ®, GMF_CFG5_REG_MAC );
595 EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
596 EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
597 EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
598 EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
599 efab->op->mac_writel ( efab, ®, GMF_CFG5_REG_MAC );
603 EFAB_POPULATE_DWORD_4 ( reg,
604 GM_HWADDR_5, efab->mac_addr[5],
605 GM_HWADDR_4, efab->mac_addr[4],
606 GM_HWADDR_3, efab->mac_addr[3],
607 GM_HWADDR_2, efab->mac_addr[2] );
608 efab->op->mac_writel ( efab, ®, GM_ADR1_REG_MAC );
610 EFAB_POPULATE_DWORD_2 ( reg,
611 GM_HWADDR_1, efab->mac_addr[1],
612 GM_HWADDR_0, efab->mac_addr[0] );
613 efab->op->mac_writel ( efab, ®, GM_ADR2_REG_MAC );
618 * Wait for GMII access to complete
621 static int mentormac_gmii_wait ( struct efab_nic *efab ) {
623 efab_dword_t indicator;
625 for ( count = 0 ; count < 1000 ; count++ ) {
627 efab->op->mac_readl ( efab, &indicator,
628 GM_MII_MGMT_IND_REG_MAC );
629 if ( EFAB_DWORD_FIELD ( indicator, GM_MGMT_BUSY ) == 0 )
632 printf ( "Timed out waiting for GMII\n" );
637 * Write a GMII register
640 static void mentormac_mdio_write ( struct efab_nic *efab, int phy_id,
641 int location, int value ) {
645 EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id,
648 /* Mentor MAC connects both PHYs to MAC 0 */
649 save_port = efab->port;
652 /* Check MII not currently being accessed */
653 if ( ! mentormac_gmii_wait ( efab ) )
656 /* Write the address register */
657 EFAB_POPULATE_DWORD_2 ( reg,
658 GM_MGMT_PHY_ADDR, phy_id,
659 GM_MGMT_REG_ADDR, location );
660 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_ADR_REG_MAC );
664 EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CTL, value );
665 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CTL_REG_MAC );
667 /* Wait for data to be written */
668 mentormac_gmii_wait ( efab );
671 /* Restore efab->port */
672 efab->port = save_port;
676 * Read a GMII register
679 static int mentormac_mdio_read ( struct efab_nic *efab, int phy_id,
685 /* Mentor MAC connects both PHYs to MAC 0 */
686 save_port = efab->port;
689 /* Check MII not currently being accessed */
690 if ( ! mentormac_gmii_wait ( efab ) )
693 /* Write the address register */
694 EFAB_POPULATE_DWORD_2 ( reg,
695 GM_MGMT_PHY_ADDR, phy_id,
696 GM_MGMT_REG_ADDR, location );
697 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_ADR_REG_MAC );
700 /* Request data to be read */
701 EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_RD_CYC, 1 );
702 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CMD_REG_MAC );
704 /* Wait for data to be become available */
705 if ( mentormac_gmii_wait ( efab ) ) {
707 efab->op->mac_readl ( efab, ®, GM_MII_MGMT_STAT_REG_MAC );
708 value = EFAB_DWORD_FIELD ( reg, GM_MGMT_STAT );
709 EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
710 phy_id, location, value );
713 /* Signal completion */
714 EFAB_ZERO_DWORD ( reg );
715 efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CMD_REG_MAC );
719 /* Restore efab->port */
720 efab->port = save_port;
725 /**************************************************************************
729 **************************************************************************
732 /** Control and General Status */
733 #define EF1_CTR_GEN_STATUS0_REG 0x0
734 #define EF1_MASTER_EVENTS_LBN 12
735 #define EF1_MASTER_EVENTS_WIDTH 1
736 #define EF1_TX_ENGINE_EN_LBN 19
737 #define EF1_TX_ENGINE_EN_WIDTH 1
738 #define EF1_RX_ENGINE_EN_LBN 18
739 #define EF1_RX_ENGINE_EN_WIDTH 1
740 #define EF1_LB_RESET_LBN 3
741 #define EF1_LB_RESET_WIDTH 1
742 #define EF1_MAC_RESET_LBN 2
743 #define EF1_MAC_RESET_WIDTH 1
744 #define EF1_CAM_ENABLE_LBN 1
745 #define EF1_CAM_ENABLE_WIDTH 1
748 #define EF1_IRQ_SRC_REG 0x0008
751 #define EF1_IRQ_MASK_REG 0x000c
752 #define EF1_IRQ_PHY1_LBN 11
753 #define EF1_IRQ_PHY1_WIDTH 1
754 #define EF1_IRQ_PHY0_LBN 10
755 #define EF1_IRQ_PHY0_WIDTH 1
756 #define EF1_IRQ_SERR_LBN 7
757 #define EF1_IRQ_SERR_WIDTH 1
758 #define EF1_IRQ_EVQ_LBN 3
759 #define EF1_IRQ_EVQ_WIDTH 1
761 /** Event generation */
762 #define EF1_EVT3_REG 0x38
765 #define EF1_EEPROM_REG 0x0040
766 #define EF1_EEPROM_LBN 0
767 #define EF1_EEPROM_WIDTH 32
769 /** Control register 2 */
770 #define EF1_CTL2_REG 0x4c
771 #define EF1_MEM_MAP_4MB_LBN 11
772 #define EF1_MEM_MAP_4MB_WIDTH 1
773 #define EF1_EV_INTR_CLR_WRITE_LBN 6
774 #define EF1_EV_INTR_CLR_WRITE_WIDTH 1
775 #define EF1_SW_RESET_LBN 2
776 #define EF1_SW_RESET_WIDTH 1
777 #define EF1_INTR_AFTER_EVENT_LBN 1
778 #define EF1_INTR_AFTER_EVENT_WIDTH 1
781 #define EF1_EVENT_FIFO_REG 0x50
783 /** Event FIFO count */
784 #define EF1_EVENT_FIFO_COUNT_REG 0x5c
785 #define EF1_EV_COUNT_LBN 0
786 #define EF1_EV_COUNT_WIDTH 16
788 /** TX DMA control and status */
789 #define EF1_DMA_TX_CSR_REG 0x80
790 #define EF1_DMA_TX_CSR_CHAIN_EN_LBN 8
791 #define EF1_DMA_TX_CSR_CHAIN_EN_WIDTH 1
792 #define EF1_DMA_TX_CSR_ENABLE_LBN 4
793 #define EF1_DMA_TX_CSR_ENABLE_WIDTH 1
794 #define EF1_DMA_TX_CSR_INT_EN_LBN 0
795 #define EF1_DMA_TX_CSR_INT_EN_WIDTH 1
797 /** RX DMA control and status */
798 #define EF1_DMA_RX_CSR_REG 0xa0
799 #define EF1_DMA_RX_ABOVE_1GB_EN_LBN 6
800 #define EF1_DMA_RX_ABOVE_1GB_EN_WIDTH 1
801 #define EF1_DMA_RX_BELOW_1MB_EN_LBN 5
802 #define EF1_DMA_RX_BELOW_1MB_EN_WIDTH 1
803 #define EF1_DMA_RX_CSR_ENABLE_LBN 0
804 #define EF1_DMA_RX_CSR_ENABLE_WIDTH 1
806 /** Level 5 watermark register (in MAC space) */
807 #define EF1_GMF_L5WM_REG_MAC 0x20
808 #define EF1_L5WM_LBN 0
809 #define EF1_L5WM_WIDTH 32
812 #define EF1_GM_MAC_CLK_REG 0x112000
813 #define EF1_GM_PORT0_MAC_CLK_LBN 0
814 #define EF1_GM_PORT0_MAC_CLK_WIDTH 1
815 #define EF1_GM_PORT1_MAC_CLK_LBN 1
816 #define EF1_GM_PORT1_MAC_CLK_WIDTH 1
818 /** TX descriptor FIFO */
819 #define EF1_TX_DESC_FIFO 0x141000
820 #define EF1_TX_KER_EVQ_LBN 80
821 #define EF1_TX_KER_EVQ_WIDTH 12
822 #define EF1_TX_KER_IDX_LBN 64
823 #define EF1_TX_KER_IDX_WIDTH 16
824 #define EF1_TX_KER_MODE_LBN 63
825 #define EF1_TX_KER_MODE_WIDTH 1
826 #define EF1_TX_KER_PORT_LBN 60
827 #define EF1_TX_KER_PORT_WIDTH 1
828 #define EF1_TX_KER_CONT_LBN 56
829 #define EF1_TX_KER_CONT_WIDTH 1
830 #define EF1_TX_KER_BYTE_CNT_LBN 32
831 #define EF1_TX_KER_BYTE_CNT_WIDTH 24
832 #define EF1_TX_KER_BUF_ADR_LBN 0
833 #define EF1_TX_KER_BUF_ADR_WIDTH 32
835 /** TX descriptor FIFO flush */
836 #define EF1_TX_DESC_FIFO_FLUSH 0x141ffc
838 /** RX descriptor FIFO */
839 #define EF1_RX_DESC_FIFO 0x145000
840 #define EF1_RX_KER_EVQ_LBN 48
841 #define EF1_RX_KER_EVQ_WIDTH 12
842 #define EF1_RX_KER_IDX_LBN 32
843 #define EF1_RX_KER_IDX_WIDTH 16
844 #define EF1_RX_KER_BUF_ADR_LBN 0
845 #define EF1_RX_KER_BUF_ADR_WIDTH 32
847 /** RX descriptor FIFO flush */
848 #define EF1_RX_DESC_FIFO_FLUSH 0x145ffc
851 #define EF1_CAM_BASE 0x1c0000
852 #define EF1_CAM_WTF_DOES_THIS_DO_LBN 0
853 #define EF1_CAM_WTF_DOES_THIS_DO_WIDTH 32
855 /** Event queue pointers */
856 #define EF1_EVQ_PTR_BASE 0x260000
857 #define EF1_EVQ_SIZE_LBN 29
858 #define EF1_EVQ_SIZE_WIDTH 2
859 #define EF1_EVQ_SIZE_4K 3
860 #define EF1_EVQ_SIZE_2K 2
861 #define EF1_EVQ_SIZE_1K 1
862 #define EF1_EVQ_SIZE_512 0
863 #define EF1_EVQ_BUF_BASE_ID_LBN 0
864 #define EF1_EVQ_BUF_BASE_ID_WIDTH 29
867 #define EF1002_MAC_REGBANK 0x110000
868 #define EF1002_MAC_REGBANK_SIZE 0x1000
869 #define EF1002_MAC_REG_SIZE 0x08
871 /** Offset of a MAC register within EF1002 */
872 #define EF1002_MAC_REG( efab, mac_reg ) \
873 ( EF1002_MAC_REGBANK + \
874 ( (efab)->port * EF1002_MAC_REGBANK_SIZE ) + \
875 ( (mac_reg) * EF1002_MAC_REG_SIZE ) )
877 /* Event queue entries */
878 #define EF1_EV_CODE_LBN 20
879 #define EF1_EV_CODE_WIDTH 8
880 #define EF1_RX_EV_DECODE 0x01
881 #define EF1_TX_EV_DECODE 0x02
882 #define EF1_DRV_GEN_EV_DECODE 0x0f
885 #define EF1_RX_EV_LEN_LBN 48
886 #define EF1_RX_EV_LEN_WIDTH 16
887 #define EF1_RX_EV_PORT_LBN 17
888 #define EF1_RX_EV_PORT_WIDTH 3
889 #define EF1_RX_EV_OK_LBN 16
890 #define EF1_RX_EV_OK_WIDTH 1
891 #define EF1_RX_EV_IDX_LBN 0
892 #define EF1_RX_EV_IDX_WIDTH 16
894 /* Transmit events */
895 #define EF1_TX_EV_PORT_LBN 17
896 #define EF1_TX_EV_PORT_WIDTH 3
897 #define EF1_TX_EV_OK_LBN 16
898 #define EF1_TX_EV_OK_WIDTH 1
899 #define EF1_TX_EV_IDX_LBN 0
900 #define EF1_TX_EV_IDX_WIDTH 16
902 /* I2C ID of the EEPROM */
903 #define EF1_EEPROM_I2C_ID 0x50
905 /* Offset of MAC address within EEPROM */
906 #define EF1_EEPROM_HWADDR_OFFSET 0x0
909 * Write dword to EF1002 register
912 static inline void ef1002_writel ( struct efab_nic *efab, efab_dword_t *value,
914 EFAB_REGDUMP ( "Writing register %x with " EFAB_DWORD_FMT "\n",
915 reg, EFAB_DWORD_VAL ( *value ) );
916 writel ( value->u32[0], efab->membase + reg );
920 * Read dword from an EF1002 register
923 static inline void ef1002_readl ( struct efab_nic *efab, efab_dword_t *value,
925 value->u32[0] = readl ( efab->membase + reg );
926 EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
927 reg, EFAB_DWORD_VAL ( *value ) );
931 * Read dword from an EF1002 register, silently
934 static inline void ef1002_readl_silent ( struct efab_nic *efab,
937 value->u32[0] = readl ( efab->membase + reg );
944 static void ef1002_get_membase ( struct efab_nic *efab ) {
945 unsigned long membase_phys;
947 membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_0 );
948 efab->membase = ioremap ( membase_phys, 0x800000 );
951 /** PCI registers to backup/restore over a device reset */
952 static const unsigned int efab_pci_reg_addr[] = {
953 PCI_COMMAND, 0x0c /* PCI_CACHE_LINE_SIZE */,
954 PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
955 PCI_BASE_ADDRESS_3, PCI_ROM_ADDRESS, PCI_INTERRUPT_LINE,
957 /** Number of registers in efab_pci_reg_addr */
958 #define EFAB_NUM_PCI_REG \
959 ( sizeof ( efab_pci_reg_addr ) / sizeof ( efab_pci_reg_addr[0] ) )
960 /** PCI configuration space backup */
961 struct efab_pci_reg {
962 uint32_t reg[EFAB_NUM_PCI_REG];
966 * I2C interface and EEPROM
970 static unsigned long ef1002_i2c_bits[] = {
971 [I2C_BIT_SCL] = ( 1 << 30 ),
972 [I2C_BIT_SDA] = ( 1 << 31 ),
975 static void ef1002_i2c_write_bit ( struct bit_basher *basher,
976 unsigned int bit_id, unsigned long data ) {
977 struct efab_nic *efab = container_of ( basher, struct efab_nic,
982 mask = ef1002_i2c_bits[bit_id];
983 efab->ef1002_i2c_outputs &= ~mask;
984 efab->ef1002_i2c_outputs |= ( data & mask );
985 EFAB_POPULATE_DWORD_1 ( reg, EF1_EEPROM, efab->ef1002_i2c_outputs );
986 ef1002_writel ( efab, ®, EF1_EEPROM_REG );
989 static int ef1002_i2c_read_bit ( struct bit_basher *basher,
990 unsigned int bit_id ) {
991 struct efab_nic *efab = container_of ( basher, struct efab_nic,
996 mask = ef1002_i2c_bits[bit_id];
997 ef1002_readl ( efab, ®, EF1_EEPROM_REG );
998 return ( EFAB_DWORD_FIELD ( reg, EF1_EEPROM ) & mask );
1001 static void ef1002_init_eeprom ( struct efab_nic *efab ) {
1002 efab->ef1002_i2c.basher.write = ef1002_i2c_write_bit;
1003 efab->ef1002_i2c.basher.read = ef1002_i2c_read_bit;
1004 init_i2c_bit_basher ( &efab->ef1002_i2c );
1005 efab->ef1002_eeprom.address = EF1_EEPROM_I2C_ID;
1012 static int ef1002_reset ( struct efab_nic *efab ) {
1013 struct efab_pci_reg pci_reg;
1014 struct pci_device *pci_dev = efab->pci;
1019 /* Back up PCI configuration registers */
1020 for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
1021 pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i],
1025 /* Reset the whole device. */
1026 EFAB_POPULATE_DWORD_1 ( reg, EF1_SW_RESET, 1 );
1027 ef1002_writel ( efab, ®, EF1_CTL2_REG );
1030 /* Restore PCI configuration space */
1031 for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
1032 pci_write_config_dword ( pci_dev, efab_pci_reg_addr[i],
1036 /* Verify PCI configuration space */
1037 for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
1038 pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &tmp );
1039 if ( tmp != pci_reg.reg[i] ) {
1040 printf ( "PCI restore failed on register %02x "
1041 "(is %08x, should be %08x); reboot\n",
1042 i, tmp, pci_reg.reg[i] );
1047 /* Verify device reset complete */
1048 ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1049 if ( EFAB_DWORD_IS_ALL_ONES ( reg ) ) {
1050 printf ( "Reset failed\n" );
1061 static int ef1002_init_nic ( struct efab_nic *efab ) {
1065 /* No idea what CAM is, but the 'datasheet' says that we have
1066 * to write these values in at start of day
1068 EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x6 );
1069 ef1002_writel ( efab, ®, EF1_CAM_BASE + 0x20018 );
1071 EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x01000000 );
1072 ef1002_writel ( efab, ®, EF1_CAM_BASE + 0x00018 );
1075 /* General control register 0 */
1076 ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1077 EFAB_SET_DWORD_FIELD ( reg, EF1_MASTER_EVENTS, 0 );
1078 EFAB_SET_DWORD_FIELD ( reg, EF1_CAM_ENABLE, 1 );
1079 ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1082 /* General control register 2 */
1083 ef1002_readl ( efab, ®, EF1_CTL2_REG );
1084 EFAB_SET_DWORD_FIELD ( reg, EF1_INTR_AFTER_EVENT, 1 );
1085 EFAB_SET_DWORD_FIELD ( reg, EF1_EV_INTR_CLR_WRITE, 0 );
1086 EFAB_SET_DWORD_FIELD ( reg, EF1_MEM_MAP_4MB, 0 );
1087 ef1002_writel ( efab, ®, EF1_CTL2_REG );
1091 ef1002_readl ( efab, ®, EF1_DMA_RX_CSR_REG );
1092 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_CSR_ENABLE, 1 );
1093 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_BELOW_1MB_EN, 1 );
1094 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_ABOVE_1GB_EN, 1 );
1095 ef1002_writel ( efab, ®, EF1_DMA_RX_CSR_REG );
1099 ef1002_readl ( efab, ®, EF1_DMA_TX_CSR_REG );
1100 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_CHAIN_EN, 1 );
1101 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_ENABLE, 0 /* ?? */ );
1102 EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_INT_EN, 0 /* ?? */ );
1103 ef1002_writel ( efab, ®, EF1_DMA_TX_CSR_REG );
1106 /* Flush descriptor queues */
1107 EFAB_ZERO_DWORD ( reg );
1108 ef1002_writel ( efab, ®, EF1_RX_DESC_FIFO_FLUSH );
1109 ef1002_writel ( efab, ®, EF1_TX_DESC_FIFO_FLUSH );
1113 /* Reset both MACs */
1114 save_port = efab->port;
1116 mentormac_reset ( efab, 1 );
1118 mentormac_reset ( efab, 1 );
1120 /* Reset both PHYs */
1121 ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1122 EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 1 );
1123 ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1125 EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 0 );
1126 ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG );
1129 /* Take MACs out of reset */
1131 mentormac_reset ( efab, 0 );
1133 mentormac_reset ( efab, 0 );
1134 efab->port = save_port;
1136 /* Give PHY time to wake up. It takes a while. */
1139 /* Attach I2C bus */
1140 ef1002_init_eeprom ( efab );
1146 * Read MAC address from EEPROM
1149 static int ef1002_read_eeprom ( struct efab_nic *efab ) {
1150 struct i2c_interface *i2c = &efab->ef1002_i2c.i2c;
1151 struct i2c_device *i2cdev = &efab->ef1002_eeprom;
1153 return i2c->read ( i2c, i2cdev, EF1_EEPROM_HWADDR_OFFSET,
1154 efab->mac_addr, sizeof ( efab->mac_addr ) );
1157 /** RX descriptor */
1158 typedef efab_qword_t ef1002_rx_desc_t;
1161 * Build RX descriptor
1164 static void ef1002_build_rx_desc ( struct efab_nic *efab,
1165 struct efab_rx_buf *rx_buf ) {
1166 ef1002_rx_desc_t rxd;
1168 EFAB_POPULATE_QWORD_3 ( rxd,
1170 EF1_RX_KER_IDX, rx_buf->id,
1172 virt_to_bus ( rx_buf->addr ) );
1173 ef1002_writel ( efab, &rxd.dword[0], EF1_RX_DESC_FIFO + 0 );
1174 ef1002_writel ( efab, &rxd.dword[1], EF1_RX_DESC_FIFO + 4 );
1179 * Update RX descriptor write pointer
1182 static void ef1002_notify_rx_desc ( struct efab_nic *efab __unused ) {
1186 /** TX descriptor */
1187 typedef efab_oword_t ef1002_tx_desc_t;
1190 * Build TX descriptor
1193 static void ef1002_build_tx_desc ( struct efab_nic *efab,
1194 struct efab_tx_buf *tx_buf ) {
1195 ef1002_tx_desc_t txd;
1197 EFAB_POPULATE_OWORD_7 ( txd,
1199 EF1_TX_KER_IDX, tx_buf->id,
1200 EF1_TX_KER_MODE, 0 /* IP mode */,
1201 EF1_TX_KER_PORT, efab->port,
1203 EF1_TX_KER_BYTE_CNT, tx_buf->len,
1205 virt_to_bus ( tx_buf->addr ) );
1207 ef1002_writel ( efab, &txd.dword[0], EF1_TX_DESC_FIFO + 0 );
1208 ef1002_writel ( efab, &txd.dword[1], EF1_TX_DESC_FIFO + 4 );
1209 ef1002_writel ( efab, &txd.dword[2], EF1_TX_DESC_FIFO + 8 );
1214 * Update TX descriptor write pointer
1217 static void ef1002_notify_tx_desc ( struct efab_nic *efab __unused ) {
1222 typedef efab_qword_t ef1002_event_t;
1225 * Retrieve event from event queue
1228 static int ef1002_fetch_event ( struct efab_nic *efab,
1229 struct efab_event *event ) {
1234 /* Check event FIFO depth */
1235 ef1002_readl_silent ( efab, ®, EF1_EVENT_FIFO_COUNT_REG );
1236 words = EFAB_DWORD_FIELD ( reg, EF1_EV_COUNT );
1240 /* Read event data */
1241 ef1002_readl ( efab, ®, EF1_EVENT_FIFO_REG );
1242 DBG ( "Event is " EFAB_DWORD_FMT "\n", EFAB_DWORD_VAL ( reg ) );
1245 ev_code = EFAB_DWORD_FIELD ( reg, EF1_EV_CODE );
1246 switch ( ev_code ) {
1247 case EF1_TX_EV_DECODE:
1248 event->type = EFAB_EV_TX;
1250 case EF1_RX_EV_DECODE:
1251 event->type = EFAB_EV_RX;
1252 event->rx_id = EFAB_DWORD_FIELD ( reg, EF1_RX_EV_IDX );
1253 /* RX len not available via event FIFO */
1254 event->rx_len = ETH_FRAME_LEN;
1257 printf ( "Unknown event type %d\n", ev_code );
1258 event->type = EFAB_EV_NONE;
1261 /* Clear any pending interrupts */
1262 ef1002_readl ( efab, ®, EF1_IRQ_SRC_REG );
1268 * Enable/disable interrupts
1271 static void ef1002_mask_irq ( struct efab_nic *efab, int enabled ) {
1272 efab_dword_t irq_mask;
1274 EFAB_POPULATE_DWORD_2 ( irq_mask,
1275 EF1_IRQ_SERR, enabled,
1276 EF1_IRQ_EVQ, enabled );
1277 ef1002_writel ( efab, &irq_mask, EF1_IRQ_MASK_REG );
1281 * Generate interrupt
1284 static void ef1002_generate_irq ( struct efab_nic *efab ) {
1285 ef1002_event_t test_event;
1287 EFAB_POPULATE_QWORD_1 ( test_event,
1288 EF1_EV_CODE, EF1_DRV_GEN_EV_DECODE );
1289 ef1002_writel ( efab, &test_event.dword[0], EF1_EVT3_REG );
1293 * Write dword to an EF1002 MAC register
1296 static void ef1002_mac_writel ( struct efab_nic *efab,
1297 efab_dword_t *value, unsigned int mac_reg ) {
1298 ef1002_writel ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
1302 * Read dword from an EF1002 MAC register
1305 static void ef1002_mac_readl ( struct efab_nic *efab,
1306 efab_dword_t *value, unsigned int mac_reg ) {
1307 ef1002_readl ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
1314 static int ef1002_init_mac ( struct efab_nic *efab ) {
1315 static struct efab_mentormac_parameters ef1002_mentormac_params = {
1316 .gmf_cfgfrth = 0x13,
1317 .gmf_cfgftth = 0x10,
1318 .gmf_cfghwmft = 0x555,
1323 unsigned int mac_clk;
1325 /* Initialise PHY */
1326 alaska_init ( efab );
1328 /* Initialise MAC */
1329 mentormac_init ( efab, &ef1002_mentormac_params );
1331 /* Write Level 5 watermark register */
1332 EFAB_POPULATE_DWORD_1 ( reg, EF1_L5WM, 0x10040000 );
1333 efab->op->mac_writel ( efab, ®, EF1_GMF_L5WM_REG_MAC );
1336 /* Set MAC clock speed */
1337 ef1002_readl ( efab, ®, EF1_GM_MAC_CLK_REG );
1338 mac_clk = ( efab->link_options & LPA_1000 ) ? 0 : 1;
1339 if ( efab->port == 0 ) {
1340 EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT0_MAC_CLK, mac_clk );
1342 EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT1_MAC_CLK, mac_clk );
1344 ef1002_writel ( efab, ®, EF1_GM_MAC_CLK_REG );
1351 static void ef1002_mdio_write ( struct efab_nic *efab, int location,
1353 mentormac_mdio_write ( efab, efab->port + 2, location, value );
1357 static int ef1002_mdio_read ( struct efab_nic *efab, int location ) {
1358 return mentormac_mdio_read ( efab, efab->port + 2, location );
1361 static struct efab_operations ef1002_operations = {
1362 .get_membase = ef1002_get_membase,
1363 .reset = ef1002_reset,
1364 .init_nic = ef1002_init_nic,
1365 .read_eeprom = ef1002_read_eeprom,
1366 .build_rx_desc = ef1002_build_rx_desc,
1367 .notify_rx_desc = ef1002_notify_rx_desc,
1368 .build_tx_desc = ef1002_build_tx_desc,
1369 .notify_tx_desc = ef1002_notify_tx_desc,
1370 .fetch_event = ef1002_fetch_event,
1371 .mask_irq = ef1002_mask_irq,
1372 .generate_irq = ef1002_generate_irq,
1373 .mac_writel = ef1002_mac_writel,
1374 .mac_readl = ef1002_mac_readl,
1375 .init_mac = ef1002_init_mac,
1376 .mdio_write = ef1002_mdio_write,
1377 .mdio_read = ef1002_mdio_read,
1380 /**************************************************************************
1384 **************************************************************************
1387 /* I/O BAR address register */
1388 #define FCN_IOM_IND_ADR_REG 0x0
1390 /* I/O BAR data register */
1391 #define FCN_IOM_IND_DAT_REG 0x4
1393 /* Interrupt enable register */
1394 #define FCN_INT_EN_REG_KER 0x0010
1395 #define FCN_MEM_PERR_INT_EN_KER_LBN 5
1396 #define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
1397 #define FCN_KER_INT_CHAR_LBN 4
1398 #define FCN_KER_INT_CHAR_WIDTH 1
1399 #define FCN_KER_INT_KER_LBN 3
1400 #define FCN_KER_INT_KER_WIDTH 1
1401 #define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
1402 #define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
1403 #define FCN_SRM_PERR_INT_EN_KER_LBN 1
1404 #define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
1405 #define FCN_DRV_INT_EN_KER_LBN 0
1406 #define FCN_DRV_INT_EN_KER_WIDTH 1
1408 /* Interrupt status register */
1409 #define FCN_INT_ADR_REG_KER 0x0030
1410 #define FCN_INT_ADR_KER_LBN 0
1411 #define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )
1413 /* Interrupt acknowledge register */
1414 #define FCN_INT_ACK_KER_REG 0x0050
1416 /* SPI host command register */
1417 #define FCN_EE_SPI_HCMD_REG_KER 0x0100
1418 #define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
1419 #define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
1420 #define FCN_EE_WR_TIMER_ACTIVE_LBN 28
1421 #define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
1422 #define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
1423 #define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
1424 #define FCN_EE_SPI_EEPROM 0
1425 #define FCN_EE_SPI_FLASH 1
1426 #define FCN_EE_SPI_HCMD_DABCNT_LBN 16
1427 #define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
1428 #define FCN_EE_SPI_HCMD_READ_LBN 15
1429 #define FCN_EE_SPI_HCMD_READ_WIDTH 1
1430 #define FCN_EE_SPI_READ 1
1431 #define FCN_EE_SPI_WRITE 0
1432 #define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
1433 #define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
1434 #define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
1435 #define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
1436 #define FCN_EE_SPI_HCMD_ENC_LBN 0
1437 #define FCN_EE_SPI_HCMD_ENC_WIDTH 8
1439 /* SPI host address register */
1440 #define FCN_EE_SPI_HADR_REG_KER 0x0110
1441 #define FCN_EE_SPI_HADR_DUBYTE_LBN 24
1442 #define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
1443 #define FCN_EE_SPI_HADR_ADR_LBN 0
1444 #define FCN_EE_SPI_HADR_ADR_WIDTH 24
1446 /* SPI host data register */
1447 #define FCN_EE_SPI_HDATA_REG_KER 0x0120
1448 #define FCN_EE_SPI_HDATA3_LBN 96
1449 #define FCN_EE_SPI_HDATA3_WIDTH 32
1450 #define FCN_EE_SPI_HDATA2_LBN 64
1451 #define FCN_EE_SPI_HDATA2_WIDTH 32
1452 #define FCN_EE_SPI_HDATA1_LBN 32
1453 #define FCN_EE_SPI_HDATA1_WIDTH 32
1454 #define FCN_EE_SPI_HDATA0_LBN 0
1455 #define FCN_EE_SPI_HDATA0_WIDTH 32
1457 /* GPIO control register */
1458 #define FCN_GPIO_CTL_REG_KER 0x0210
1459 #define FCN_FLASH_PRESENT_LBN 7
1460 #define FCN_FLASH_PRESENT_WIDTH 1
1461 #define FCN_EEPROM_PRESENT_LBN 6
1462 #define FCN_EEPROM_PRESENT_WIDTH 1
1464 /* Global control register */
1465 #define FCN_GLB_CTL_REG_KER 0x0220
1466 #define FCN_EXT_PHY_RST_CTL_LBN 63
1467 #define FCN_EXT_PHY_RST_CTL_WIDTH 1
1468 #define FCN_PCIE_SD_RST_CTL_LBN 61
1469 #define FCN_PCIE_SD_RST_CTL_WIDTH 1
1470 #define FCN_PCIX_RST_CTL_LBN 60
1471 #define FCN_PCIX_RST_CTL_WIDTH 1
1472 #define FCN_RST_EXT_PHY_LBN 31
1473 #define FCN_RST_EXT_PHY_WIDTH 1
1474 #define FCN_INT_RST_DUR_LBN 4
1475 #define FCN_INT_RST_DUR_WIDTH 3
1476 #define FCN_EXT_PHY_RST_DUR_LBN 1
1477 #define FCN_EXT_PHY_RST_DUR_WIDTH 3
1478 #define FCN_SWRST_LBN 0
1479 #define FCN_SWRST_WIDTH 1
1480 #define FCN_INCLUDE_IN_RESET 0
1481 #define FCN_EXCLUDE_FROM_RESET 1
1483 /* Timer table for kernel access */
1484 #define FCN_TIMER_CMD_REG_KER 0x420
1485 #define FCN_TIMER_MODE_LBN 12
1486 #define FCN_TIMER_MODE_WIDTH 2
1487 #define FCN_TIMER_MODE_DIS 0
1488 #define FCN_TIMER_MODE_INT_HLDOFF 1
1489 #define FCN_TIMER_VAL_LBN 0
1490 #define FCN_TIMER_VAL_WIDTH 12
1492 /* SRAM receive descriptor cache configuration register */
1493 #define FCN_SRM_RX_DC_CFG_REG_KER 0x610
1494 #define FCN_SRM_RX_DC_BASE_ADR_LBN 0
1495 #define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21
1497 /* SRAM transmit descriptor cache configuration register */
1498 #define FCN_SRM_TX_DC_CFG_REG_KER 0x620
1499 #define FCN_SRM_TX_DC_BASE_ADR_LBN 0
1500 #define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21
1502 /* Receive filter control register */
1503 #define FCN_RX_FILTER_CTL_REG_KER 0x810
1504 #define FCN_NUM_KER_LBN 24
1505 #define FCN_NUM_KER_WIDTH 2
1507 /* Receive descriptor update register */
1508 #define FCN_RX_DESC_UPD_REG_KER 0x0830
1509 #define FCN_RX_DESC_WPTR_LBN 96
1510 #define FCN_RX_DESC_WPTR_WIDTH 12
1511 #define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
1512 #define FCN_RX_DESC_WPTR_DWORD_LBN 0
1513 #define FCN_RX_DESC_WPTR_DWORD_WIDTH 12
1515 /* Receive descriptor cache configuration register */
1516 #define FCN_RX_DC_CFG_REG_KER 0x840
1517 #define FCN_RX_DC_SIZE_LBN 0
1518 #define FCN_RX_DC_SIZE_WIDTH 2
1520 /* Transmit descriptor update register */
1521 #define FCN_TX_DESC_UPD_REG_KER 0x0a10
1522 #define FCN_TX_DESC_WPTR_LBN 96
1523 #define FCN_TX_DESC_WPTR_WIDTH 12
1524 #define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
1525 #define FCN_TX_DESC_WPTR_DWORD_LBN 0
1526 #define FCN_TX_DESC_WPTR_DWORD_WIDTH 12
1528 /* Transmit descriptor cache configuration register */
1529 #define FCN_TX_DC_CFG_REG_KER 0xa20
1530 #define FCN_TX_DC_SIZE_LBN 0
1531 #define FCN_TX_DC_SIZE_WIDTH 2
1533 /* PHY management transmit data register */
1534 #define FCN_MD_TXD_REG_KER 0xc00
1535 #define FCN_MD_TXD_LBN 0
1536 #define FCN_MD_TXD_WIDTH 16
1538 /* PHY management receive data register */
1539 #define FCN_MD_RXD_REG_KER 0xc10
1540 #define FCN_MD_RXD_LBN 0
1541 #define FCN_MD_RXD_WIDTH 16
1543 /* PHY management configuration & status register */
1544 #define FCN_MD_CS_REG_KER 0xc20
1545 #define FCN_MD_GC_LBN 4
1546 #define FCN_MD_GC_WIDTH 1
1547 #define FCN_MD_RIC_LBN 2
1548 #define FCN_MD_RIC_WIDTH 1
1549 #define FCN_MD_WRC_LBN 0
1550 #define FCN_MD_WRC_WIDTH 1
1552 /* PHY management PHY address register */
1553 #define FCN_MD_PHY_ADR_REG_KER 0xc30
1554 #define FCN_MD_PHY_ADR_LBN 0
1555 #define FCN_MD_PHY_ADR_WIDTH 16
1557 /* PHY management ID register */
1558 #define FCN_MD_ID_REG_KER 0xc40
1559 #define FCN_MD_PRT_ADR_LBN 11
1560 #define FCN_MD_PRT_ADR_WIDTH 5
1561 #define FCN_MD_DEV_ADR_LBN 6
1562 #define FCN_MD_DEV_ADR_WIDTH 5
1564 /* PHY management status & mask register */
1565 #define FCN_MD_STAT_REG_KER 0xc50
1566 #define FCN_MD_BSY_LBN 0
1567 #define FCN_MD_BSY_WIDTH 1
1569 /* Port 0 and 1 MAC control registers */
1570 #define FCN_MAC0_CTRL_REG_KER 0xc80
1571 #define FCN_MAC1_CTRL_REG_KER 0xc90
1572 #define FCN_MAC_XOFF_VAL_LBN 16
1573 #define FCN_MAC_XOFF_VAL_WIDTH 16
1574 #define FCN_MAC_BCAD_ACPT_LBN 4
1575 #define FCN_MAC_BCAD_ACPT_WIDTH 1
1576 #define FCN_MAC_UC_PROM_LBN 3
1577 #define FCN_MAC_UC_PROM_WIDTH 1
1578 #define FCN_MAC_LINK_STATUS_LBN 2
1579 #define FCN_MAC_LINK_STATUS_WIDTH 1
1580 #define FCN_MAC_SPEED_LBN 0
1581 #define FCN_MAC_SPEED_WIDTH 2
1583 /* XGMAC global configuration - port 0*/
1584 #define FCN_XM_GLB_CFG_REG_P0_KER 0x1220
1585 #define FCN_XM_RX_STAT_EN_LBN 11
1586 #define FCN_XM_RX_STAT_EN_WIDTH 1
1587 #define FCN_XM_TX_STAT_EN_LBN 10
1588 #define FCN_XM_TX_STAT_EN_WIDTH 1
1589 #define FCN_XM_CUT_THRU_MODE_LBN 7
1590 #define FCN_XM_CUT_THRU_MODE_WIDTH 1
1591 #define FCN_XM_RX_JUMBO_MODE_LBN 6
1592 #define FCN_XM_RX_JUMBO_MODE_WIDTH 1
1594 /* XGMAC transmit configuration - port 0 */
1595 #define FCN_XM_TX_CFG_REG_P0_KER 0x1230
1596 #define FCN_XM_IPG_LBN 16
1597 #define FCN_XM_IPG_WIDTH 4
1598 #define FCN_XM_WTF_DOES_THIS_DO_LBN 9
1599 #define FCN_XM_WTF_DOES_THIS_DO_WIDTH 1
1600 #define FCN_XM_TXCRC_LBN 8
1601 #define FCN_XM_TXCRC_WIDTH 1
1602 #define FCN_XM_AUTO_PAD_LBN 5
1603 #define FCN_XM_AUTO_PAD_WIDTH 1
1604 #define FCN_XM_TX_PRMBL_LBN 2
1605 #define FCN_XM_TX_PRMBL_WIDTH 1
1606 #define FCN_XM_TXEN_LBN 1
1607 #define FCN_XM_TXEN_WIDTH 1
1609 /* XGMAC receive configuration - port 0 */
1610 #define FCN_XM_RX_CFG_REG_P0_KER 0x1240
1611 #define FCN_XM_PASS_CRC_ERR_LBN 25
1612 #define FCN_XM_PASS_CRC_ERR_WIDTH 1
1613 #define FCN_XM_AUTO_DEPAD_LBN 8
1614 #define FCN_XM_AUTO_DEPAD_WIDTH 1
1615 #define FCN_XM_RXEN_LBN 1
1616 #define FCN_XM_RXEN_WIDTH 1
1618 /* Receive descriptor pointer table */
1619 #define FCN_RX_DESC_PTR_TBL_KER 0x11800
1620 #define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
1621 #define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
1622 #define FCN_RX_DESCQ_EVQ_ID_LBN 24
1623 #define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
1624 #define FCN_RX_DESCQ_OWNER_ID_LBN 10
1625 #define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
1626 #define FCN_RX_DESCQ_SIZE_LBN 3
1627 #define FCN_RX_DESCQ_SIZE_WIDTH 2
1628 #define FCN_RX_DESCQ_SIZE_4K 3
1629 #define FCN_RX_DESCQ_SIZE_2K 2
1630 #define FCN_RX_DESCQ_SIZE_1K 1
1631 #define FCN_RX_DESCQ_SIZE_512 0
1632 #define FCN_RX_DESCQ_TYPE_LBN 2
1633 #define FCN_RX_DESCQ_TYPE_WIDTH 1
1634 #define FCN_RX_DESCQ_JUMBO_LBN 1
1635 #define FCN_RX_DESCQ_JUMBO_WIDTH 1
1636 #define FCN_RX_DESCQ_EN_LBN 0
1637 #define FCN_RX_DESCQ_EN_WIDTH 1
1639 /* Transmit descriptor pointer table */
1640 #define FCN_TX_DESC_PTR_TBL_KER 0x11900
1641 #define FCN_TX_DESCQ_EN_LBN 88
1642 #define FCN_TX_DESCQ_EN_WIDTH 1
1643 #define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
1644 #define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
1645 #define FCN_TX_DESCQ_EVQ_ID_LBN 24
1646 #define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
1647 #define FCN_TX_DESCQ_OWNER_ID_LBN 10
1648 #define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
1649 #define FCN_TX_DESCQ_SIZE_LBN 3
1650 #define FCN_TX_DESCQ_SIZE_WIDTH 2
1651 #define FCN_TX_DESCQ_SIZE_4K 3
1652 #define FCN_TX_DESCQ_SIZE_2K 2
1653 #define FCN_TX_DESCQ_SIZE_1K 1
1654 #define FCN_TX_DESCQ_SIZE_512 0
1655 #define FCN_TX_DESCQ_TYPE_LBN 1
1656 #define FCN_TX_DESCQ_TYPE_WIDTH 2
1657 #define FCN_TX_DESCQ_FLUSH_LBN 0
1658 #define FCN_TX_DESCQ_FLUSH_WIDTH 1
1660 /* Event queue pointer */
1661 #define FCN_EVQ_PTR_TBL_KER 0x11a00
1662 #define FCN_EVQ_EN_LBN 23
1663 #define FCN_EVQ_EN_WIDTH 1
1664 #define FCN_EVQ_SIZE_LBN 20
1665 #define FCN_EVQ_SIZE_WIDTH 3
1666 #define FCN_EVQ_SIZE_32K 6
1667 #define FCN_EVQ_SIZE_16K 5
1668 #define FCN_EVQ_SIZE_8K 4
1669 #define FCN_EVQ_SIZE_4K 3
1670 #define FCN_EVQ_SIZE_2K 2
1671 #define FCN_EVQ_SIZE_1K 1
1672 #define FCN_EVQ_SIZE_512 0
1673 #define FCN_EVQ_BUF_BASE_ID_LBN 0
1674 #define FCN_EVQ_BUF_BASE_ID_WIDTH 20
1676 /* Event queue read pointer */
1677 #define FCN_EVQ_RPTR_REG_KER 0x11b00
1678 #define FCN_EVQ_RPTR_LBN 0
1679 #define FCN_EVQ_RPTR_WIDTH 14
1680 #define FCN_EVQ_RPTR_REG_KER_DWORD ( FCN_EVQ_RPTR_REG_KER + 0 )
1681 #define FCN_EVQ_RPTR_DWORD_LBN 0
1682 #define FCN_EVQ_RPTR_DWORD_WIDTH 14
1684 /* Special buffer descriptors */
1685 #define FCN_BUF_FULL_TBL_KER 0x18000
1686 #define FCN_IP_DAT_BUF_SIZE_LBN 50
1687 #define FCN_IP_DAT_BUF_SIZE_WIDTH 1
1688 #define FCN_IP_DAT_BUF_SIZE_8K 1
1689 #define FCN_IP_DAT_BUF_SIZE_4K 0
1690 #define FCN_BUF_ADR_FBUF_LBN 14
1691 #define FCN_BUF_ADR_FBUF_WIDTH 34
1692 #define FCN_BUF_OWNER_ID_FBUF_LBN 0
1693 #define FCN_BUF_OWNER_ID_FBUF_WIDTH 14
1696 #define FALCON_MAC_REGBANK 0xe00
1697 #define FALCON_MAC_REGBANK_SIZE 0x200
1698 #define FALCON_MAC_REG_SIZE 0x10
1700 /** Offset of a MAC register within Falcon */
1701 #define FALCON_MAC_REG( efab, mac_reg ) \
1702 ( FALCON_MAC_REGBANK + \
1703 ( (efab)->port * FALCON_MAC_REGBANK_SIZE ) + \
1704 ( (mac_reg) * FALCON_MAC_REG_SIZE ) )
1705 #define FCN_MAC_DATA_LBN 0
1706 #define FCN_MAC_DATA_WIDTH 32
1708 /* Transmit descriptor */
1709 #define FCN_TX_KER_PORT_LBN 63
1710 #define FCN_TX_KER_PORT_WIDTH 1
1711 #define FCN_TX_KER_BYTE_CNT_LBN 48
1712 #define FCN_TX_KER_BYTE_CNT_WIDTH 14
1713 #define FCN_TX_KER_BUF_ADR_LBN 0
1714 #define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
1716 /* Receive descriptor */
1717 #define FCN_RX_KER_BUF_SIZE_LBN 48
1718 #define FCN_RX_KER_BUF_SIZE_WIDTH 14
1719 #define FCN_RX_KER_BUF_ADR_LBN 0
1720 #define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
1722 /* Event queue entries */
1723 #define FCN_EV_CODE_LBN 60
1724 #define FCN_EV_CODE_WIDTH 4
1725 #define FCN_RX_IP_EV_DECODE 0
1726 #define FCN_TX_IP_EV_DECODE 2
1727 #define FCN_DRIVER_EV_DECODE 5
1729 /* Receive events */
1730 #define FCN_RX_PORT_LBN 30
1731 #define FCN_RX_PORT_WIDTH 1
1732 #define FCN_RX_EV_BYTE_CNT_LBN 16
1733 #define FCN_RX_EV_BYTE_CNT_WIDTH 14
1734 #define FCN_RX_EV_DESC_PTR_LBN 0
1735 #define FCN_RX_EV_DESC_PTR_WIDTH 12
1737 /* Transmit events */
1738 #define FCN_TX_EV_DESC_PTR_LBN 0
1739 #define FCN_TX_EV_DESC_PTR_WIDTH 12
1741 /* Fixed special buffer numbers to use */
1742 #define FALCON_EVQ_ID 0
1743 #define FALCON_TXD_ID 1
1744 #define FALCON_RXD_ID 2
1746 #if FALCON_USE_IO_BAR
1748 /* Write dword via the I/O BAR */
1749 static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
1750 unsigned int reg ) {
1751 outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
1752 outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
1755 /* Read dword via the I/O BAR */
1756 static inline uint32_t _falcon_readl ( struct efab_nic *efab,
1757 unsigned int reg ) {
1758 outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
1759 return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
1762 #else /* FALCON_USE_IO_BAR */
1764 #define _falcon_writel( efab, value, reg ) \
1765 writel ( (value), (efab)->membase + (reg) )
1766 #define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )
1768 #endif /* FALCON_USE_IO_BAR */
1771 * Write to a Falcon register
1774 static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value,
1775 unsigned int reg ) {
1777 EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
1778 reg, EFAB_OWORD_VAL ( *value ) );
1780 _falcon_writel ( efab, value->u32[0], reg + 0 );
1781 _falcon_writel ( efab, value->u32[1], reg + 4 );
1782 _falcon_writel ( efab, value->u32[2], reg + 8 );
1783 _falcon_writel ( efab, value->u32[3], reg + 12 );
1788 * Write to Falcon SRAM
1791 static inline void falcon_write_sram ( struct efab_nic *efab,
1792 efab_qword_t *value,
1793 unsigned int index ) {
1794 unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
1795 ( index * sizeof ( *value ) ) );
1797 EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
1798 reg, EFAB_QWORD_VAL ( *value ) );
1800 _falcon_writel ( efab, value->u32[0], reg + 0 );
1801 _falcon_writel ( efab, value->u32[1], reg + 4 );
1806 * Write dword to Falcon register that allows partial writes
1809 static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value,
1810 unsigned int reg ) {
1811 EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
1812 reg, EFAB_DWORD_VAL ( *value ) );
1813 _falcon_writel ( efab, value->u32[0], reg );
1817 * Read from a Falcon register
1820 static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value,
1821 unsigned int reg ) {
1822 value->u32[0] = _falcon_readl ( efab, reg + 0 );
1823 value->u32[1] = _falcon_readl ( efab, reg + 4 );
1824 value->u32[2] = _falcon_readl ( efab, reg + 8 );
1825 value->u32[3] = _falcon_readl ( efab, reg + 12 );
1827 EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
1828 reg, EFAB_OWORD_VAL ( *value ) );
1832 * Read from Falcon SRAM
1835 static inline void falcon_read_sram ( struct efab_nic *efab,
1836 efab_qword_t *value,
1837 unsigned int index ) {
1838 unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
1839 ( index * sizeof ( *value ) ) );
1841 value->u32[0] = _falcon_readl ( efab, reg + 0 );
1842 value->u32[1] = _falcon_readl ( efab, reg + 4 );
1843 EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
1844 reg, EFAB_QWORD_VAL ( *value ) );
1848 * Read dword from a portion of a Falcon register
1851 static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value,
1852 unsigned int reg ) {
1853 value->u32[0] = _falcon_readl ( efab, reg );
1854 EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
1855 reg, EFAB_DWORD_VAL ( *value ) );
1859 * Verified write to Falcon SRAM
1862 static inline void falcon_write_sram_verify ( struct efab_nic *efab,
1863 efab_qword_t *value,
1864 unsigned int index ) {
1865 efab_qword_t verify;
1867 falcon_write_sram ( efab, value, index );
1869 falcon_read_sram ( efab, &verify, index );
1870 if ( memcmp ( &verify, value, sizeof ( verify ) ) != 0 ) {
1871 printf ( "SRAM index %x failure: wrote " EFAB_QWORD_FMT
1872 " got " EFAB_QWORD_FMT "\n", index,
1873 EFAB_QWORD_VAL ( *value ),
1874 EFAB_QWORD_VAL ( verify ) );
1882 static void falcon_get_membase ( struct efab_nic *efab ) {
1883 unsigned long membase_phys;
1885 membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_2 );
1886 efab->membase = ioremap ( membase_phys, 0x20000 );
1889 #define FCN_DUMP_REG( efab, _reg ) do { \
1891 falcon_read ( efab, ®, _reg ); \
1892 printf ( #_reg " = " EFAB_OWORD_FMT "\n", \
1893 EFAB_OWORD_VAL ( reg ) ); \
1896 #define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \
1898 efab->op->mac_readl ( efab, ®, _mac_reg ); \
1899 printf ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \
1900 EFAB_DWORD_VAL ( reg ) ); \
1904 * Dump register contents (for debugging)
1906 * Marked as static inline so that it will not be compiled in if not
1909 static inline void falcon_dump_regs ( struct efab_nic *efab ) {
1910 FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
1911 FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
1912 FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
1913 FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
1914 FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
1915 FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
1916 FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
1917 FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
1918 FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
1919 FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
1920 FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
1921 FCN_DUMP_REG ( efab, FCN_XM_GLB_CFG_REG_P0_KER );
1922 FCN_DUMP_REG ( efab, FCN_XM_TX_CFG_REG_P0_KER );
1923 FCN_DUMP_REG ( efab, FCN_XM_RX_CFG_REG_P0_KER );
1924 FCN_DUMP_REG ( efab, FCN_RX_DESC_PTR_TBL_KER );
1925 FCN_DUMP_REG ( efab, FCN_TX_DESC_PTR_TBL_KER );
1926 FCN_DUMP_REG ( efab, FCN_EVQ_PTR_TBL_KER );
1927 FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
1928 FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
1929 FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
1930 FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
1931 FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
1932 FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
1933 FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
1934 FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
1935 FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
1936 FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
1937 FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
1938 FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
1942 * Create special buffer
1945 static void falcon_create_special_buffer ( struct efab_nic *efab,
1946 void *addr, unsigned int index ) {
1947 efab_qword_t buf_desc;
1948 unsigned long dma_addr;
1950 memset ( addr, 0, 4096 );
1951 dma_addr = virt_to_bus ( addr );
1952 EFAB_ASSERT ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
1953 EFAB_POPULATE_QWORD_3 ( buf_desc,
1954 FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
1955 FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
1956 FCN_BUF_OWNER_ID_FBUF, 0 );
1957 falcon_write_sram_verify ( efab, &buf_desc, index );
1961 * Update event queue read pointer
1964 static void falcon_eventq_read_ack ( struct efab_nic *efab ) {
1967 EFAB_ASSERT ( efab->eventq_read_ptr < EFAB_EVQ_SIZE );
1969 EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD,
1970 efab->eventq_read_ptr );
1971 falcon_writel ( efab, ®, FCN_EVQ_RPTR_REG_KER_DWORD );
1978 static int falcon_reset ( struct efab_nic *efab ) {
1979 efab_oword_t glb_ctl_reg_ker;
1981 /* Initiate software reset */
1982 EFAB_POPULATE_OWORD_5 ( glb_ctl_reg_ker,
1983 FCN_EXT_PHY_RST_CTL, FCN_EXCLUDE_FROM_RESET,
1984 FCN_PCIE_SD_RST_CTL, FCN_EXCLUDE_FROM_RESET,
1985 FCN_PCIX_RST_CTL, FCN_EXCLUDE_FROM_RESET,
1986 FCN_INT_RST_DUR, 0x7 /* datasheet */,
1988 falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
1990 /* Allow 20ms for reset */
1993 /* Check for device reset complete */
1994 falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
1995 if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
1996 printf ( "Reset failed\n" );
2007 static int falcon_init_nic ( struct efab_nic *efab ) {
2009 efab_dword_t timer_cmd;
2011 /* Set up TX and RX descriptor caches in SRAM */
2012 EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR,
2013 0x130000 /* recommended in datasheet */ );
2014 falcon_write ( efab, ®, FCN_SRM_TX_DC_CFG_REG_KER );
2015 EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 2 /* 32 descriptors */ );
2016 falcon_write ( efab, ®, FCN_TX_DC_CFG_REG_KER );
2017 EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR,
2018 0x100000 /* recommended in datasheet */ );
2019 falcon_write ( efab, ®, FCN_SRM_RX_DC_CFG_REG_KER );
2020 EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
2021 falcon_write ( efab, ®, FCN_RX_DC_CFG_REG_KER );
2023 /* Set number of RSS CPUs */
2024 EFAB_POPULATE_OWORD_1 ( reg, FCN_NUM_KER, 0 );
2025 falcon_write ( efab, ®, FCN_RX_FILTER_CTL_REG_KER );
2029 mentormac_reset ( efab, 1 );
2030 /* Take MAC out of reset */
2031 mentormac_reset ( efab, 0 );
2033 /* Set up event queue */
2034 falcon_create_special_buffer ( efab, efab->eventq, FALCON_EVQ_ID );
2035 EFAB_POPULATE_OWORD_3 ( reg,
2037 FCN_EVQ_SIZE, FCN_EVQ_SIZE_512,
2038 FCN_EVQ_BUF_BASE_ID, FALCON_EVQ_ID );
2039 falcon_write ( efab, ®, FCN_EVQ_PTR_TBL_KER );
2042 /* Set timer register */
2043 EFAB_POPULATE_DWORD_2 ( timer_cmd,
2044 FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
2046 falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
2049 /* Initialise event queue read pointer */
2050 falcon_eventq_read_ack ( efab );
2052 /* Set up TX descriptor ring */
2053 falcon_create_special_buffer ( efab, efab->txd, FALCON_TXD_ID );
2054 EFAB_POPULATE_OWORD_5 ( reg,
2056 FCN_TX_DESCQ_BUF_BASE_ID, FALCON_TXD_ID,
2057 FCN_TX_DESCQ_EVQ_ID, 0,
2058 FCN_TX_DESCQ_SIZE, FCN_TX_DESCQ_SIZE_512,
2059 FCN_TX_DESCQ_TYPE, 0 /* kernel queue */ );
2060 falcon_write ( efab, ®, FCN_TX_DESC_PTR_TBL_KER );
2062 /* Set up RX descriptor ring */
2063 falcon_create_special_buffer ( efab, efab->rxd, FALCON_RXD_ID );
2064 EFAB_POPULATE_OWORD_6 ( reg,
2065 FCN_RX_DESCQ_BUF_BASE_ID, FALCON_RXD_ID,
2066 FCN_RX_DESCQ_EVQ_ID, 0,
2067 FCN_RX_DESCQ_SIZE, FCN_RX_DESCQ_SIZE_512,
2068 FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
2069 FCN_RX_DESCQ_JUMBO, 1,
2070 FCN_RX_DESCQ_EN, 1 );
2071 falcon_write ( efab, ®, FCN_RX_DESC_PTR_TBL_KER );
2073 /* Program INT_ADR_REG_KER */
2074 EFAB_POPULATE_OWORD_1 ( reg,
2076 virt_to_bus ( &efab->int_ker ) );
2077 falcon_write ( efab, ®, FCN_INT_ADR_REG_KER );
2084 struct efab_spi_device {
2086 unsigned int device_id;
2087 /** Address length (in bytes) */
2088 unsigned int addr_len;
2090 unsigned int read_command;
2094 * Wait for SPI command completion
2097 static int falcon_spi_wait ( struct efab_nic *efab ) {
2104 falcon_read ( efab, ®, FCN_EE_SPI_HCMD_REG_KER );
2105 if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
2107 } while ( ++count < 1000 );
2108 printf ( "Timed out waiting for SPI\n" );
2116 static int falcon_spi_read ( struct efab_nic *efab,
2117 struct efab_spi_device *spi,
2118 int address, void *data, unsigned int len ) {
2121 /* Program address register */
2122 EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
2123 falcon_write ( efab, ®, FCN_EE_SPI_HADR_REG_KER );
2125 /* Issue read command */
2126 EFAB_POPULATE_OWORD_7 ( reg,
2127 FCN_EE_SPI_HCMD_CMD_EN, 1,
2128 FCN_EE_SPI_HCMD_SF_SEL, spi->device_id,
2129 FCN_EE_SPI_HCMD_DABCNT, len,
2130 FCN_EE_SPI_HCMD_READ, FCN_EE_SPI_READ,
2131 FCN_EE_SPI_HCMD_DUBCNT, 0,
2132 FCN_EE_SPI_HCMD_ADBCNT, spi->addr_len,
2133 FCN_EE_SPI_HCMD_ENC, spi->read_command );
2134 falcon_write ( efab, ®, FCN_EE_SPI_HCMD_REG_KER );
2136 /* Wait for read to complete */
2137 if ( ! falcon_spi_wait ( efab ) )
2141 falcon_read ( efab, ®, FCN_EE_SPI_HDATA_REG_KER );
2142 memcpy ( data, ®, len );
2147 #define SPI_READ_CMD 0x03
2148 #define AT25F1024_ADDR_LEN 3
2149 #define AT25F1024_READ_CMD SPI_READ_CMD
2150 #define MC25XX640_ADDR_LEN 2
2151 #define MC25XX640_READ_CMD SPI_READ_CMD
2153 /** Falcon Flash SPI device */
2154 static struct efab_spi_device falcon_spi_flash = {
2155 .device_id = FCN_EE_SPI_FLASH,
2156 .addr_len = AT25F1024_ADDR_LEN,
2157 .read_command = AT25F1024_READ_CMD,
2160 /** Falcon EEPROM SPI device */
2161 static struct efab_spi_device falcon_spi_large_eeprom = {
2162 .device_id = FCN_EE_SPI_EEPROM,
2163 .addr_len = MC25XX640_ADDR_LEN,
2164 .read_command = MC25XX640_READ_CMD,
2167 /** Offset of MAC address within EEPROM or Flash */
2168 #define FALCON_MAC_ADDRESS_OFFSET(port) ( 0x310 + 0x08 * (port) )
2171 * Read MAC address from EEPROM
2174 static int falcon_read_eeprom ( struct efab_nic *efab ) {
2177 struct efab_spi_device *spi;
2179 /* Determine the SPI device containing the MAC address */
2180 falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER );
2181 has_flash = EFAB_OWORD_FIELD ( reg, FCN_FLASH_PRESENT );
2182 spi = has_flash ? &falcon_spi_flash : &falcon_spi_large_eeprom;
2184 return falcon_spi_read ( efab, spi,
2185 FALCON_MAC_ADDRESS_OFFSET ( efab->port ),
2186 efab->mac_addr, sizeof ( efab->mac_addr ) );
2189 /** RX descriptor */
2190 typedef efab_qword_t falcon_rx_desc_t;
2193 * Build RX descriptor
2196 static void falcon_build_rx_desc ( struct efab_nic *efab,
2197 struct efab_rx_buf *rx_buf ) {
2198 falcon_rx_desc_t *rxd;
2200 rxd = ( ( falcon_rx_desc_t * ) efab->rxd ) + rx_buf->id;
2201 EFAB_POPULATE_QWORD_2 ( *rxd,
2202 FCN_RX_KER_BUF_SIZE, EFAB_DATA_BUF_SIZE,
2204 virt_to_bus ( rx_buf->addr ) );
2208 * Update RX descriptor write pointer
2211 static void falcon_notify_rx_desc ( struct efab_nic *efab ) {
2214 EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD,
2215 efab->rx_write_ptr );
2216 falcon_writel ( efab, ®, FCN_RX_DESC_UPD_REG_KER_DWORD );
2219 /** TX descriptor */
2220 typedef efab_qword_t falcon_tx_desc_t;
2223 * Build TX descriptor
2226 static void falcon_build_tx_desc ( struct efab_nic *efab,
2227 struct efab_tx_buf *tx_buf ) {
2228 falcon_rx_desc_t *txd;
2230 txd = ( ( falcon_rx_desc_t * ) efab->txd ) + tx_buf->id;
2231 EFAB_POPULATE_QWORD_3 ( *txd,
2232 FCN_TX_KER_PORT, efab->port,
2233 FCN_TX_KER_BYTE_CNT, tx_buf->len,
2235 virt_to_bus ( tx_buf->addr ) );
2239 * Update TX descriptor write pointer
2242 static void falcon_notify_tx_desc ( struct efab_nic *efab ) {
2245 EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD,
2246 efab->tx_write_ptr );
2247 falcon_writel ( efab, ®, FCN_TX_DESC_UPD_REG_KER_DWORD );
2251 typedef efab_qword_t falcon_event_t;
2254 * Retrieve event from event queue
2257 static int falcon_fetch_event ( struct efab_nic *efab,
2258 struct efab_event *event ) {
2259 falcon_event_t *evt;
2263 /* Check for event */
2264 evt = ( ( falcon_event_t * ) efab->eventq ) + efab->eventq_read_ptr;
2265 if ( EFAB_QWORD_IS_ZERO ( *evt ) ) {
2270 DBG ( "Event is " EFAB_QWORD_FMT "\n", EFAB_QWORD_VAL ( *evt ) );
2273 ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
2274 switch ( ev_code ) {
2275 case FCN_TX_IP_EV_DECODE:
2276 event->type = EFAB_EV_TX;
2278 case FCN_RX_IP_EV_DECODE:
2279 event->type = EFAB_EV_RX;
2280 event->rx_id = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
2281 event->rx_len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
2282 rx_port = EFAB_QWORD_FIELD ( *evt, FCN_RX_PORT );
2283 if ( rx_port != efab->port ) {
2284 /* Ignore packets on the wrong port. We can't
2285 * just set event->type = EFAB_EV_NONE,
2286 * because then the descriptor ring won't get
2292 case FCN_DRIVER_EV_DECODE:
2293 /* Ignore start-of-day events */
2294 event->type = EFAB_EV_NONE;
2297 printf ( "Unknown event type %d\n", ev_code );
2298 event->type = EFAB_EV_NONE;
2301 /* Clear event and any pending interrupts */
2302 EFAB_ZERO_QWORD ( *evt );
2303 falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG );
2306 /* Increment and update event queue read pointer */
2307 efab->eventq_read_ptr = ( ( efab->eventq_read_ptr + 1 )
2309 falcon_eventq_read_ack ( efab );
2315 * Enable/disable/generate interrupt
2318 static inline void falcon_interrupts ( struct efab_nic *efab, int enabled,
2320 efab_oword_t int_en_reg_ker;
2322 EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
2323 FCN_KER_INT_KER, force,
2324 FCN_DRV_INT_EN_KER, enabled );
2325 falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );
2329 * Enable/disable interrupts
2332 static void falcon_mask_irq ( struct efab_nic *efab, int enabled ) {
2333 falcon_interrupts ( efab, enabled, 0 );
2335 /* Events won't trigger interrupts until we do this */
2336 falcon_eventq_read_ack ( efab );
2341 * Generate interrupt
2344 static void falcon_generate_irq ( struct efab_nic *efab ) {
2345 falcon_interrupts ( efab, 1, 1 );
2349 * Write dword to a Falcon MAC register
2352 static void falcon_mac_writel ( struct efab_nic *efab,
2353 efab_dword_t *value, unsigned int mac_reg ) {
2356 EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
2357 EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
2358 falcon_write ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
2362 * Read dword from a Falcon MAC register
2365 static void falcon_mac_readl ( struct efab_nic *efab, efab_dword_t *value,
2366 unsigned int mac_reg ) {
2369 falcon_read ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
2370 EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
2371 EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
2378 static int falcon_init_mac ( struct efab_nic *efab ) {
2379 static struct efab_mentormac_parameters falcon_mentormac_params = {
2380 .gmf_cfgfrth = 0x12,
2381 .gmf_cfgftth = 0x08,
2382 .gmf_cfghwmft = 0x1c,
2389 /* Initialise PHY */
2390 alaska_init ( efab );
2392 /* Initialise MAC */
2393 mentormac_init ( efab, &falcon_mentormac_params );
2395 /* Configure the Falcon MAC wrapper */
2396 EFAB_POPULATE_OWORD_4 ( reg,
2397 FCN_XM_RX_JUMBO_MODE, 0,
2398 FCN_XM_CUT_THRU_MODE, 0,
2399 FCN_XM_TX_STAT_EN, 1,
2400 FCN_XM_RX_STAT_EN, 1);
2401 falcon_write ( efab, ®, FCN_XM_GLB_CFG_REG_P0_KER );
2403 EFAB_POPULATE_OWORD_6 ( reg,
2408 FCN_XM_WTF_DOES_THIS_DO, 1,
2410 falcon_write ( efab, ®, FCN_XM_TX_CFG_REG_P0_KER );
2412 EFAB_POPULATE_OWORD_3 ( reg,
2414 FCN_XM_AUTO_DEPAD, 1,
2415 FCN_XM_PASS_CRC_ERR, 1 );
2416 falcon_write ( efab, ®, FCN_XM_RX_CFG_REG_P0_KER );
2418 #warning "10G support not yet present"
2420 if ( efab->link_options & LPA_10000 ) {
2422 } else if ( efab->link_options & LPA_1000 ) {
2424 } else if ( efab->link_options & LPA_100 ) {
2429 EFAB_POPULATE_OWORD_5 ( reg,
2430 FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
2431 FCN_MAC_BCAD_ACPT, 1,
2433 FCN_MAC_LINK_STATUS, 1,
2434 FCN_MAC_SPEED, link_speed );
2435 falcon_write ( efab, ®, ( efab->port == 0 ?
2436 FCN_MAC0_CTRL_REG_KER : FCN_MAC1_CTRL_REG_KER ) );
2442 * Wait for GMII access to complete
2445 static int falcon_gmii_wait ( struct efab_nic *efab ) {
2446 efab_oword_t md_stat;
2449 for ( count = 0 ; count < 1000 ; count++ ) {
2451 falcon_read ( efab, &md_stat, FCN_MD_STAT_REG_KER );
2452 if ( EFAB_OWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 )
2455 printf ( "Timed out waiting for GMII\n" );
2460 static void falcon_mdio_write ( struct efab_nic *efab, int location,
2462 int phy_id = efab->port + 2;
2465 #warning "10G PHY access not yet in place"
2467 EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
2468 phy_id, location, value );
2470 /* Check MII not currently being accessed */
2471 if ( ! falcon_gmii_wait ( efab ) )
2474 /* Write the address registers */
2475 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
2476 falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER );
2478 EFAB_POPULATE_OWORD_2 ( reg,
2479 FCN_MD_PRT_ADR, phy_id,
2480 FCN_MD_DEV_ADR, location );
2481 falcon_write ( efab, ®, FCN_MD_ID_REG_KER );
2485 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
2486 falcon_write ( efab, ®, FCN_MD_TXD_REG_KER );
2488 EFAB_POPULATE_OWORD_2 ( reg,
2491 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
2494 /* Wait for data to be written */
2495 falcon_gmii_wait ( efab );
2499 static int falcon_mdio_read ( struct efab_nic *efab, int location ) {
2500 int phy_id = efab->port + 2;
2504 /* Check MII not currently being accessed */
2505 if ( ! falcon_gmii_wait ( efab ) )
2508 /* Write the address registers */
2509 EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
2510 falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER );
2512 EFAB_POPULATE_OWORD_2 ( reg,
2513 FCN_MD_PRT_ADR, phy_id,
2514 FCN_MD_DEV_ADR, location );
2515 falcon_write ( efab, ®, FCN_MD_ID_REG_KER );
2518 /* Request data to be read */
2519 EFAB_POPULATE_OWORD_2 ( reg,
2522 falcon_write ( efab, ®, FCN_MD_CS_REG_KER );
2525 /* Wait for data to become available */
2526 falcon_gmii_wait ( efab );
2529 falcon_read ( efab, ®, FCN_MD_RXD_REG_KER );
2530 value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
2532 EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
2533 phy_id, location, value );
2538 static struct efab_operations falcon_operations = {
2539 .get_membase = falcon_get_membase,
2540 .reset = falcon_reset,
2541 .init_nic = falcon_init_nic,
2542 .read_eeprom = falcon_read_eeprom,
2543 .build_rx_desc = falcon_build_rx_desc,
2544 .notify_rx_desc = falcon_notify_rx_desc,
2545 .build_tx_desc = falcon_build_tx_desc,
2546 .notify_tx_desc = falcon_notify_tx_desc,
2547 .fetch_event = falcon_fetch_event,
2548 .mask_irq = falcon_mask_irq,
2549 .generate_irq = falcon_generate_irq,
2550 .mac_writel = falcon_mac_writel,
2551 .mac_readl = falcon_mac_readl,
2552 .init_mac = falcon_init_mac,
2553 .mdio_write = falcon_mdio_write,
2554 .mdio_read = falcon_mdio_read,
2557 /**************************************************************************
2559 * Etherfabric abstraction layer
2561 **************************************************************************
2565 * Push RX buffer to RXD ring
2568 static inline void efab_push_rx_buffer ( struct efab_nic *efab,
2569 struct efab_rx_buf *rx_buf ) {
2570 /* Create RX descriptor */
2571 rx_buf->id = efab->rx_write_ptr;
2572 efab->op->build_rx_desc ( efab, rx_buf );
2574 /* Update RX write pointer */
2575 efab->rx_write_ptr = ( efab->rx_write_ptr + 1 ) % EFAB_RXD_SIZE;
2576 efab->op->notify_rx_desc ( efab );
2578 DBG ( "Added RX id %x\n", rx_buf->id );
2582 * Push TX buffer to TXD ring
2585 static inline void efab_push_tx_buffer ( struct efab_nic *efab,
2586 struct efab_tx_buf *tx_buf ) {
2587 /* Create TX descriptor */
2588 tx_buf->id = efab->tx_write_ptr;
2589 efab->op->build_tx_desc ( efab, tx_buf );
2591 /* Update TX write pointer */
2592 efab->tx_write_ptr = ( efab->tx_write_ptr + 1 ) % EFAB_TXD_SIZE;
2593 efab->op->notify_tx_desc ( efab );
2595 DBG ( "Added TX id %x\n", tx_buf->id );
2599 * Initialise MAC and wait for link up
2602 static int efab_init_mac ( struct efab_nic *efab ) {
2605 /* This can take several seconds */
2606 printf ( "Waiting for link.." );
2610 if ( ! efab->op->init_mac ( efab ) ) {
2611 printf ( "failed\n" );
2614 if ( efab->link_up ) {
2615 /* PHY init printed the message for us */
2619 } while ( ++count < 5 );
2620 printf ( "timed out\n" );
2629 static int efab_init_nic ( struct efab_nic *efab ) {
2633 if ( ! efab->op->reset ( efab ) )
2636 /* Initialise NIC */
2637 if ( ! efab->op->init_nic ( efab ) )
2640 /* Push RX descriptors */
2641 for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
2642 efab_push_rx_buffer ( efab, &efab->rx_bufs[i] );
2645 /* Read MAC address from EEPROM */
2646 if ( ! efab->op->read_eeprom ( efab ) )
2648 efab->mac_addr[ETH_ALEN-1] += efab->port;
2650 /* Initialise MAC and wait for link up */
2651 if ( ! efab_init_mac ( efab ) )
2657 /**************************************************************************
2659 * Etherboot interface
2661 **************************************************************************
2664 /**************************************************************************
2665 POLL - Wait for a frame
2666 ***************************************************************************/
2667 static int etherfabric_poll ( struct nic *nic, int retrieve ) {
2668 struct efab_nic *efab = nic->priv_data;
2669 struct efab_event event;
2670 static struct efab_rx_buf *rx_buf = NULL;
2673 /* Process the event queue until we hit either a packet
2674 * received event or an empty event slot.
2676 while ( ( rx_buf == NULL ) &&
2677 efab->op->fetch_event ( efab, &event ) ) {
2678 if ( event.type == EFAB_EV_TX ) {
2679 /* TX completed - mark as done */
2680 DBG ( "TX id %x complete\n",
2682 efab->tx_in_progress = 0;
2683 } else if ( event.type == EFAB_EV_RX ) {
2684 /* RX - find corresponding buffer */
2685 for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
2686 if ( efab->rx_bufs[i].id == event.rx_id ) {
2687 rx_buf = &efab->rx_bufs[i];
2688 rx_buf->len = event.rx_len;
2689 DBG ( "RX id %x (len %x) received\n",
2690 rx_buf->id, rx_buf->len );
2695 printf ( "Invalid RX ID %x\n", event.rx_id );
2697 } else if ( event.type == EFAB_EV_NONE ) {
2698 DBG ( "Ignorable event\n" );
2700 DBG ( "Unknown event\n" );
2704 /* If there is no packet, return 0 */
2708 /* If we don't want to retrieve it just yet, return 1 */
2712 /* Copy packet contents */
2713 nic->packetlen = rx_buf->len;
2714 memcpy ( nic->packet, rx_buf->addr, nic->packetlen );
2716 /* Give this buffer back to the NIC */
2717 efab_push_rx_buffer ( efab, rx_buf );
2719 /* Prepare to receive next packet */
2725 /**************************************************************************
2726 TRANSMIT - Transmit a frame
2727 ***************************************************************************/
2728 static void etherfabric_transmit ( struct nic *nic, const char *dest,
2729 unsigned int type, unsigned int size,
2730 const char *data ) {
2731 struct efab_nic *efab = nic->priv_data;
2732 unsigned int nstype = htons ( type );
2734 /* We can only transmit one packet at a time; a TX completion
2735 * event must be received before we can transmit the next
2736 * packet. Since there is only one static TX buffer, we don't
2737 * worry unduly about overflow, but we report it anyway.
2739 if ( efab->tx_in_progress ) {
2740 printf ( "TX overflow!\n" );
2743 /* Fill TX buffer, pad to ETH_ZLEN */
2744 memcpy ( efab->tx_buf.addr, dest, ETH_ALEN );
2745 memcpy ( efab->tx_buf.addr + ETH_ALEN, nic->node_addr, ETH_ALEN );
2746 memcpy ( efab->tx_buf.addr + 2 * ETH_ALEN, &nstype, 2 );
2747 memcpy ( efab->tx_buf.addr + ETH_HLEN, data, size );
2749 while ( size < ETH_ZLEN ) {
2750 efab->tx_buf.addr[size++] = '\0';
2752 efab->tx_buf.len = size;
2754 /* Push TX descriptor */
2755 efab_push_tx_buffer ( efab, &efab->tx_buf );
2757 /* There is no way to wait for TX complete (i.e. TX buffer
2758 * available to re-use for the next transmit) without reading
2759 * from the event queue. We therefore simply leave the TX
2760 * buffer marked as "in use" until a TX completion event
2761 * happens to be picked up by a call to etherfabric_poll().
2763 efab->tx_in_progress = 1;
2768 /**************************************************************************
2769 DISABLE - Turn off ethernet interface
2770 ***************************************************************************/
2771 static void etherfabric_disable ( struct nic *nic ) {
2772 struct efab_nic *efab = nic->priv_data;
2774 efab->op->reset ( efab );
2775 if ( efab->membase )
2776 iounmap ( efab->membase );
2779 /**************************************************************************
2780 IRQ - handle interrupts
2781 ***************************************************************************/
2782 static void etherfabric_irq ( struct nic *nic, irq_action_t action ) {
2783 struct efab_nic *efab = nic->priv_data;
2787 efab->op->mask_irq ( efab, 1 );
2790 efab->op->mask_irq ( efab, 0 );
2793 /* Force NIC to generate a receive interrupt */
2794 efab->op->generate_irq ( efab );
2801 static struct nic_operations etherfabric_operations = {
2802 .connect = dummy_connect,
2803 .poll = etherfabric_poll,
2804 .transmit = etherfabric_transmit,
2805 .irq = etherfabric_irq,
2808 /**************************************************************************
2809 PROBE - Look for an adapter, this routine's visible to the outside
2810 ***************************************************************************/
2811 static int etherfabric_probe ( struct nic *nic, struct pci_device *pci ) {
2812 static struct efab_nic efab;
2813 static int nic_port = 1;
2814 struct efab_buffers *buffers;
2817 /* Set up our private data structure */
2818 nic->priv_data = &efab;
2819 memset ( &efab, 0, sizeof ( efab ) );
2820 memset ( &efab_buffers, 0, sizeof ( efab_buffers ) );
2822 /* Hook in appropriate operations table. Do this early. */
2823 if ( pci->device == EF1002_DEVID ) {
2824 efab.op = &ef1002_operations;
2826 efab.op = &falcon_operations;
2829 /* Initialise efab data structure */
2831 buffers = ( ( struct efab_buffers * )
2832 ( ( ( void * ) &efab_buffers ) +
2833 ( - virt_to_bus ( &efab_buffers ) ) % EFAB_BUF_ALIGN ) );
2834 efab.eventq = buffers->eventq;
2835 efab.txd = buffers->txd;
2836 efab.rxd = buffers->rxd;
2837 efab.tx_buf.addr = buffers->tx_buf;
2838 for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
2839 efab.rx_bufs[i].addr = buffers->rx_buf[i];
2842 /* Enable the PCI device */
2843 adjust_pci_device ( pci );
2844 nic->ioaddr = pci->ioaddr & ~3;
2845 nic->irqno = pci->irq;
2847 /* Get iobase/membase */
2848 efab.iobase = nic->ioaddr;
2849 efab.op->get_membase ( &efab );
2851 /* Switch NIC ports (i.e. try different ports on each probe) */
2852 nic_port = 1 - nic_port;
2853 efab.port = nic_port;
2855 /* Initialise hardware */
2856 if ( ! efab_init_nic ( &efab ) )
2858 memcpy ( nic->node_addr, efab.mac_addr, ETH_ALEN );
2861 printf ( "Found EtherFabric %s NIC %!\n", pci->name, nic->node_addr );
2863 /* point to NIC specific routines */
2864 nic->nic_op = ðerfabric_operations;
2869 static struct pci_device_id etherfabric_nics[] = {
2870 PCI_ROM(0x1924, 0xC101, "ef1002", "EtherFabric EF1002"),
2871 PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon"),
2874 PCI_DRIVER ( etherfabric_driver, etherfabric_nics, PCI_NO_CLASS );
2876 DRIVER ( "EFAB", nic_driver, pci_driver, etherfabric_driver,
2877 etherfabric_probe, etherfabric_disable );