4 Copyright (c) 2005 - 2010, Intel Corporation.<BR>
\r
5 All rights reserved. This program and the accompanying materials
\r
6 are licensed and made available under the terms and conditions of the BSD License
\r
7 which accompanies this distribution. The full text of the license may be found at
\r
8 http://opensource.org/licenses/bsd-license.php
\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
\r
16 #include <Protocol/DriverBinding.h>
\r
17 #include <Protocol/ServiceBinding.h>
\r
18 #include <Protocol/SimpleNetwork.h>
\r
19 #include <Protocol/ManagedNetwork.h>
\r
20 #include <Protocol/HiiConfigRouting.h>
\r
21 #include <Protocol/ComponentName.h>
\r
22 #include <Protocol/ComponentName2.h>
\r
24 #include <Guid/NicIp4ConfigNvData.h>
\r
26 #include <Library/NetLib.h>
\r
27 #include <Library/BaseLib.h>
\r
28 #include <Library/DebugLib.h>
\r
29 #include <Library/BaseMemoryLib.h>
\r
30 #include <Library/UefiBootServicesTableLib.h>
\r
31 #include <Library/UefiRuntimeServicesTableLib.h>
\r
32 #include <Library/MemoryAllocationLib.h>
\r
33 #include <Library/DevicePathLib.h>
\r
34 #include <Library/HiiLib.h>
\r
35 #include <Library/PrintLib.h>
\r
37 #define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE
\r
40 // All the supported IP4 maskes in host byte order.
\r
42 GLOBAL_REMOVE_IF_UNREFERENCED IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = {
\r
81 GLOBAL_REMOVE_IF_UNREFERENCED EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}};
\r
84 // Any error level digitally larger than mNetDebugLevelMax
\r
85 // will be silently discarded.
\r
87 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mNetDebugLevelMax = NETDEBUG_LEVEL_ERROR;
\r
88 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogPacketSeq = 0xDEADBEEF;
\r
91 // You can change mSyslogDstMac mSyslogDstIp and mSyslogSrcIp
\r
92 // here to direct the syslog packets to the syslog deamon. The
\r
93 // default is broadcast to both the ethernet and IP.
\r
95 GLOBAL_REMOVE_IF_UNREFERENCED UINT8 mSyslogDstMac[NET_ETHER_ADDR_LEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
\r
96 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogDstIp = 0xffffffff;
\r
97 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogSrcIp = 0;
\r
99 GLOBAL_REMOVE_IF_UNREFERENCED CHAR8 *mMonthName[] = {
\r
115 // VLAN device path node template
\r
117 GLOBAL_REMOVE_IF_UNREFERENCED VLAN_DEVICE_PATH mNetVlanDevicePathTemplate = {
\r
119 MESSAGING_DEVICE_PATH,
\r
122 (UINT8) (sizeof (VLAN_DEVICE_PATH)),
\r
123 (UINT8) ((sizeof (VLAN_DEVICE_PATH)) >> 8)
\r
130 Locate the handles that support SNP, then open one of them
\r
131 to send the syslog packets. The caller isn't required to close
\r
132 the SNP after use because the SNP is opened by HandleProtocol.
\r
134 @return The point to SNP if one is properly openned. Otherwise NULL
\r
137 EFI_SIMPLE_NETWORK_PROTOCOL *
\r
142 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
\r
144 EFI_HANDLE *Handles;
\r
149 // Locate the handles which has SNP installed.
\r
152 Status = gBS->LocateHandleBuffer (
\r
154 &gEfiSimpleNetworkProtocolGuid,
\r
160 if (EFI_ERROR (Status) || (HandleCount == 0)) {
\r
165 // Try to open one of the ethernet SNP protocol to send packet
\r
169 for (Index = 0; Index < HandleCount; Index++) {
\r
170 Status = gBS->HandleProtocol (
\r
172 &gEfiSimpleNetworkProtocolGuid,
\r
176 if ((Status == EFI_SUCCESS) && (Snp != NULL) &&
\r
177 (Snp->Mode->IfType == NET_IFTYPE_ETHERNET) &&
\r
178 (Snp->Mode->MaxPacketSize >= NET_SYSLOG_PACKET_LEN)) {
\r
186 FreePool (Handles);
\r
191 Transmit a syslog packet synchronously through SNP. The Packet
\r
192 already has the ethernet header prepended. This function should
\r
193 fill in the source MAC because it will try to locate a SNP each
\r
194 time it is called to avoid the problem if SNP is unloaded.
\r
195 This code snip is copied from MNP.
\r
197 @param[in] Packet The Syslog packet
\r
198 @param[in] Length The length of the packet
\r
200 @retval EFI_DEVICE_ERROR Failed to locate a usable SNP protocol
\r
201 @retval EFI_TIMEOUT Timeout happened to send the packet.
\r
202 @retval EFI_SUCCESS Packet is sent.
\r
211 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
\r
214 EFI_EVENT TimeoutEvent;
\r
217 Snp = SyslogLocateSnp ();
\r
220 return EFI_DEVICE_ERROR;
\r
223 Ether = (ETHER_HEAD *) Packet;
\r
224 CopyMem (Ether->SrcMac, Snp->Mode->CurrentAddress.Addr, NET_ETHER_ADDR_LEN);
\r
227 // Start the timeout event.
\r
229 Status = gBS->CreateEvent (
\r
237 if (EFI_ERROR (Status)) {
\r
241 Status = gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);
\r
243 if (EFI_ERROR (Status)) {
\r
249 // Transmit the packet through SNP.
\r
251 Status = Snp->Transmit (Snp, 0, Length, Packet, NULL, NULL, NULL);
\r
253 if ((Status != EFI_SUCCESS) && (Status != EFI_NOT_READY)) {
\r
254 Status = EFI_DEVICE_ERROR;
\r
259 // If Status is EFI_SUCCESS, the packet is put in the transmit queue.
\r
260 // if Status is EFI_NOT_READY, the transmit engine of the network
\r
261 // interface is busy. Both need to sync SNP.
\r
267 // Get the recycled transmit buffer status.
\r
269 Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf);
\r
271 if (!EFI_ERROR (gBS->CheckEvent (TimeoutEvent))) {
\r
272 Status = EFI_TIMEOUT;
\r
276 } while (TxBuf == NULL);
\r
278 if ((Status == EFI_SUCCESS) || (Status == EFI_TIMEOUT)) {
\r
283 // Status is EFI_NOT_READY. Restart the timer event and
\r
284 // call Snp->Transmit again.
\r
286 gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);
\r
289 gBS->SetTimer (TimeoutEvent, TimerCancel, 0);
\r
292 gBS->CloseEvent (TimeoutEvent);
\r
297 Build a syslog packet, including the Ethernet/Ip/Udp headers
\r
298 and user's message.
\r
300 @param[in] Level Syslog servity level
\r
301 @param[in] Module The module that generates the log
\r
302 @param[in] File The file that contains the current log
\r
303 @param[in] Line The line of code in the File that contains the current log
\r
304 @param[in] Message The log message
\r
305 @param[in] BufLen The lenght of the Buf
\r
306 @param[out] Buf The buffer to put the packet data
\r
308 @return The length of the syslog packet built.
\r
312 SyslogBuildPacket (
\r
324 EFI_UDP_HEADER *Udp4;
\r
330 // Fill in the Ethernet header. Leave alone the source MAC.
\r
331 // SyslogSendPacket will fill in the address for us.
\r
333 Ether = (ETHER_HEAD *) Buf;
\r
334 CopyMem (Ether->DstMac, mSyslogDstMac, NET_ETHER_ADDR_LEN);
\r
335 ZeroMem (Ether->SrcMac, NET_ETHER_ADDR_LEN);
\r
337 Ether->EtherType = HTONS (0x0800); // IPv4 protocol
\r
339 Buf += sizeof (ETHER_HEAD);
\r
340 BufLen -= sizeof (ETHER_HEAD);
\r
343 // Fill in the IP header
\r
345 Ip4 = (IP4_HEAD *) Buf;
\r
350 Ip4->Id = (UINT16) mSyslogPacketSeq;
\r
353 Ip4->Protocol = 0x11;
\r
355 Ip4->Src = mSyslogSrcIp;
\r
356 Ip4->Dst = mSyslogDstIp;
\r
358 Buf += sizeof (IP4_HEAD);
\r
359 BufLen -= sizeof (IP4_HEAD);
\r
362 // Fill in the UDP header, Udp checksum is optional. Leave it zero.
\r
364 Udp4 = (EFI_UDP_HEADER *) Buf;
\r
365 Udp4->SrcPort = HTONS (514);
\r
366 Udp4->DstPort = HTONS (514);
\r
368 Udp4->Checksum = 0;
\r
370 Buf += sizeof (EFI_UDP_HEADER);
\r
371 BufLen -= sizeof (EFI_UDP_HEADER);
\r
374 // Build the syslog message body with <PRI> Timestamp machine module Message
\r
376 Pri = ((NET_SYSLOG_FACILITY & 31) << 3) | (Level & 7);
\r
377 gRT->GetTime (&Time, NULL);
\r
378 ASSERT ((Time.Month <= 12) && (Time.Month >= 1));
\r
381 // Use %a to format the ASCII strings, %s to format UNICODE strings
\r
384 Len += (UINT32) AsciiSPrint (
\r
387 "<%d> %a %d %d:%d:%d ",
\r
389 mMonthName [Time.Month-1],
\r
397 Len += (UINT32) AsciiSPrint (
\r
400 "Tiano %a: %a (Line: %d File: %a)",
\r
409 // OK, patch the IP length/checksum and UDP length fields.
\r
411 Len += sizeof (EFI_UDP_HEADER);
\r
412 Udp4->Length = HTONS ((UINT16) Len);
\r
414 Len += sizeof (IP4_HEAD);
\r
415 Ip4->TotalLen = HTONS ((UINT16) Len);
\r
416 Ip4->Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Ip4, sizeof (IP4_HEAD)));
\r
418 return Len + sizeof (ETHER_HEAD);
\r
422 Allocate a buffer, then format the message to it. This is a
\r
423 help function for the NET_DEBUG_XXX macros. The PrintArg of
\r
424 these macros treats the variable length print parameters as a
\r
425 single parameter, and pass it to the NetDebugASPrint. For
\r
426 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
\r
430 NETDEBUG_LEVEL_TRACE,
\r
434 NetDebugASPrint ("State transit to %a\n", Name)
\r
437 @param Format The ASCII format string.
\r
438 @param ... The variable length parameter whose format is determined
\r
439 by the Format string.
\r
441 @return The buffer containing the formatted message,
\r
442 or NULL if failed to allocate memory.
\r
454 Buf = (CHAR8 *) AllocatePool (NET_DEBUG_MSG_LEN);
\r
460 VA_START (Marker, Format);
\r
461 AsciiVSPrint (Buf, NET_DEBUG_MSG_LEN, Format, Marker);
\r
468 Builds an UDP4 syslog packet and send it using SNP.
\r
470 This function will locate a instance of SNP then send the message through it.
\r
471 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
\r
473 @param Level The servity level of the message.
\r
474 @param Module The Moudle that generates the log.
\r
475 @param File The file that contains the log.
\r
476 @param Line The exact line that contains the log.
\r
477 @param Message The user message to log.
\r
479 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
\r
480 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
\r
481 @retval EFI_SUCCESS The log is discard because that it is more verbose
\r
482 than the mNetDebugLevelMax. Or, it has been sent out.
\r
498 // Check whether the message should be sent out
\r
500 if (Message == NULL) {
\r
501 return EFI_INVALID_PARAMETER;
\r
504 if (Level > mNetDebugLevelMax) {
\r
505 Status = EFI_SUCCESS;
\r
510 // Allocate a maxium of 1024 bytes, the caller should ensure
\r
511 // that the message plus the ethernet/ip/udp header is shorter
\r
514 Packet = (CHAR8 *) AllocatePool (NET_SYSLOG_PACKET_LEN);
\r
516 if (Packet == NULL) {
\r
517 Status = EFI_OUT_OF_RESOURCES;
\r
522 // Build the message: Ethernet header + IP header + Udp Header + user data
\r
524 Len = SyslogBuildPacket (
\r
530 NET_SYSLOG_PACKET_LEN,
\r
534 mSyslogPacketSeq++;
\r
535 Status = SyslogSendPacket (Packet, Len);
\r
539 FreePool (Message);
\r
543 Return the length of the mask.
\r
545 Return the length of the mask, the correct value is from 0 to 32.
\r
546 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
\r
547 NetMask is in the host byte order.
\r
549 @param[in] NetMask The netmask to get the length from.
\r
551 @return The length of the netmask, IP4_MASK_NUM if the mask is invalid.
\r
557 IN IP4_ADDR NetMask
\r
562 for (Index = 0; Index < IP4_MASK_NUM; Index++) {
\r
563 if (NetMask == gIp4AllMasks[Index]) {
\r
574 Return the class of the IP address, such as class A, B, C.
\r
575 Addr is in host byte order.
\r
577 The address of class A starts with 0.
\r
578 If the address belong to class A, return IP4_ADDR_CLASSA.
\r
579 The address of class B starts with 10.
\r
580 If the address belong to class B, return IP4_ADDR_CLASSB.
\r
581 The address of class C starts with 110.
\r
582 If the address belong to class C, return IP4_ADDR_CLASSC.
\r
583 The address of class D starts with 1110.
\r
584 If the address belong to class D, return IP4_ADDR_CLASSD.
\r
585 The address of class E starts with 1111.
\r
586 If the address belong to class E, return IP4_ADDR_CLASSE.
\r
589 @param[in] Addr The address to get the class from.
\r
591 @return IP address class, such as IP4_ADDR_CLASSA.
\r
602 ByteOne = (UINT8) (Addr >> 24);
\r
604 if ((ByteOne & 0x80) == 0) {
\r
605 return IP4_ADDR_CLASSA;
\r
607 } else if ((ByteOne & 0xC0) == 0x80) {
\r
608 return IP4_ADDR_CLASSB;
\r
610 } else if ((ByteOne & 0xE0) == 0xC0) {
\r
611 return IP4_ADDR_CLASSC;
\r
613 } else if ((ByteOne & 0xF0) == 0xE0) {
\r
614 return IP4_ADDR_CLASSD;
\r
617 return IP4_ADDR_CLASSE;
\r
624 Check whether the IP is a valid unicast address according to
\r
625 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
\r
627 If Ip is 0, IP is not a valid unicast address.
\r
628 Class D address is used for multicasting and class E address is reserved for future. If Ip
\r
629 belongs to class D or class E, IP is not a valid unicast address.
\r
630 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.
\r
632 @param[in] Ip The IP to check against.
\r
633 @param[in] NetMask The mask of the IP.
\r
635 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
\r
642 IN IP4_ADDR NetMask
\r
647 Class = NetGetIpClass (Ip);
\r
649 if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) {
\r
653 if (NetMask == 0) {
\r
654 NetMask = gIp4AllMasks[Class << 3];
\r
657 if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) {
\r
665 Check whether the incoming IPv6 address is a valid unicast address.
\r
667 If the address is a multicast address has binary 0xFF at the start, it is not
\r
668 a valid unicast address. If the address is unspecified ::, it is not a valid
\r
669 unicast address to be assigned to any node. If the address is loopback address
\r
670 ::1, it is also not a valid unicast address to be assigned to any physical
\r
673 @param[in] Ip6 The IPv6 address to check against.
\r
675 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
\r
679 NetIp6IsValidUnicast (
\r
680 IN EFI_IPv6_ADDRESS *Ip6
\r
686 if (Ip6->Addr[0] == 0xFF) {
\r
690 for (Index = 0; Index < 15; Index++) {
\r
691 if (Ip6->Addr[Index] != 0) {
\r
696 Byte = Ip6->Addr[Index];
\r
698 if (Byte == 0x0 || Byte == 0x1) {
\r
706 Check whether the incoming Ipv6 address is the unspecified address or not.
\r
708 @param[in] Ip6 - Ip6 address, in network order.
\r
710 @retval TRUE - Yes, unspecified
\r
715 NetIp6IsUnspecifiedAddr (
\r
716 IN EFI_IPv6_ADDRESS *Ip6
\r
721 for (Index = 0; Index < 16; Index++) {
\r
722 if (Ip6->Addr[Index] != 0) {
\r
731 Check whether the incoming Ipv6 address is a link-local address.
\r
733 @param[in] Ip6 - Ip6 address, in network order.
\r
735 @retval TRUE - Yes, link-local address
\r
740 NetIp6IsLinkLocalAddr (
\r
741 IN EFI_IPv6_ADDRESS *Ip6
\r
746 ASSERT (Ip6 != NULL);
\r
748 if (Ip6->Addr[0] != 0xFE) {
\r
752 if (Ip6->Addr[1] != 0x80) {
\r
756 for (Index = 2; Index < 8; Index++) {
\r
757 if (Ip6->Addr[Index] != 0) {
\r
766 Check whether the Ipv6 address1 and address2 are on the connected network.
\r
768 @param[in] Ip1 - Ip6 address1, in network order.
\r
769 @param[in] Ip2 - Ip6 address2, in network order.
\r
770 @param[in] PrefixLength - The prefix length of the checking net.
\r
772 @retval TRUE - Yes, connected.
\r
773 @retval FALSE - No.
\r
778 EFI_IPv6_ADDRESS *Ip1,
\r
779 EFI_IPv6_ADDRESS *Ip2,
\r
787 ASSERT ((Ip1 != NULL) && (Ip2 != NULL) && (PrefixLength < IP6_PREFIX_NUM));
\r
789 if (PrefixLength == 0) {
\r
793 Byte = (UINT8) (PrefixLength / 8);
\r
794 Bit = (UINT8) (PrefixLength % 8);
\r
796 if (CompareMem (Ip1, Ip2, Byte) != 0) {
\r
801 Mask = (UINT8) (0xFF << (8 - Bit));
\r
803 ASSERT (Byte < 16);
\r
804 if ((Ip1->Addr[Byte] & Mask) != (Ip2->Addr[Byte] & Mask)) {
\r
814 Switches the endianess of an IPv6 address
\r
816 This function swaps the bytes in a 128-bit IPv6 address to switch the value
\r
817 from little endian to big endian or vice versa. The byte swapped value is
\r
820 @param Ip6 Points to an IPv6 address
\r
822 @return The byte swapped IPv6 address.
\r
827 EFI_IPv6_ADDRESS *Ip6
\r
833 CopyMem (&High, Ip6, sizeof (UINT64));
\r
834 CopyMem (&Low, &Ip6->Addr[8], sizeof (UINT64));
\r
836 High = SwapBytes64 (High);
\r
837 Low = SwapBytes64 (Low);
\r
839 CopyMem (Ip6, &Low, sizeof (UINT64));
\r
840 CopyMem (&Ip6->Addr[8], &High, sizeof (UINT64));
\r
846 Initialize a random seed using current time.
\r
848 Get current time first. Then initialize a random seed based on some basic
\r
849 mathematics operation on the hour, day, minute, second, nanosecond and year
\r
850 of the current time.
\r
852 @return The random seed initialized with current time.
\r
857 NetRandomInitSeed (
\r
864 gRT->GetTime (&Time, NULL);
\r
865 Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second);
\r
866 Seed ^= Time.Nanosecond;
\r
867 Seed ^= Time.Year << 7;
\r
874 Extract a UINT32 from a byte stream.
\r
876 Copy a UINT32 from a byte stream, then converts it from Network
\r
877 byte order to host byte order. Use this function to avoid alignment error.
\r
879 @param[in] Buf The buffer to extract the UINT32.
\r
881 @return The UINT32 extracted.
\r
892 CopyMem (&Value, Buf, sizeof (UINT32));
\r
893 return NTOHL (Value);
\r
898 Put a UINT32 to the byte stream in network byte order.
\r
900 Converts a UINT32 from host byte order to network byte order. Then copy it to the
\r
903 @param[in, out] Buf The buffer to put the UINT32.
\r
904 @param[in] Data The data to put.
\r
914 Data = HTONL (Data);
\r
915 CopyMem (Buf, &Data, sizeof (UINT32));
\r
920 Remove the first node entry on the list, and return the removed node entry.
\r
922 Removes the first node Entry from a doubly linked list. It is up to the caller of
\r
923 this function to release the memory used by the first node if that is required. On
\r
924 exit, the removed node is returned.
\r
926 If Head is NULL, then ASSERT().
\r
927 If Head was not initialized, then ASSERT().
\r
928 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
\r
929 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
\r
932 @param[in, out] Head The list header.
\r
934 @return The first node entry that is removed from the list, NULL if the list is empty.
\r
939 NetListRemoveHead (
\r
940 IN OUT LIST_ENTRY *Head
\r
945 ASSERT (Head != NULL);
\r
947 if (IsListEmpty (Head)) {
\r
951 First = Head->ForwardLink;
\r
952 Head->ForwardLink = First->ForwardLink;
\r
953 First->ForwardLink->BackLink = Head;
\r
956 First->ForwardLink = (LIST_ENTRY *) NULL;
\r
957 First->BackLink = (LIST_ENTRY *) NULL;
\r
965 Remove the last node entry on the list and and return the removed node entry.
\r
967 Removes the last node entry from a doubly linked list. It is up to the caller of
\r
968 this function to release the memory used by the first node if that is required. On
\r
969 exit, the removed node is returned.
\r
971 If Head is NULL, then ASSERT().
\r
972 If Head was not initialized, then ASSERT().
\r
973 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
\r
974 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
\r
977 @param[in, out] Head The list head.
\r
979 @return The last node entry that is removed from the list, NULL if the list is empty.
\r
984 NetListRemoveTail (
\r
985 IN OUT LIST_ENTRY *Head
\r
990 ASSERT (Head != NULL);
\r
992 if (IsListEmpty (Head)) {
\r
996 Last = Head->BackLink;
\r
997 Head->BackLink = Last->BackLink;
\r
998 Last->BackLink->ForwardLink = Head;
\r
1001 Last->ForwardLink = (LIST_ENTRY *) NULL;
\r
1002 Last->BackLink = (LIST_ENTRY *) NULL;
\r
1010 Insert a new node entry after a designated node entry of a doubly linked list.
\r
1012 Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry
\r
1013 of the doubly linked list.
\r
1015 @param[in, out] PrevEntry The previous entry to insert after.
\r
1016 @param[in, out] NewEntry The new entry to insert.
\r
1021 NetListInsertAfter (
\r
1022 IN OUT LIST_ENTRY *PrevEntry,
\r
1023 IN OUT LIST_ENTRY *NewEntry
\r
1026 NewEntry->BackLink = PrevEntry;
\r
1027 NewEntry->ForwardLink = PrevEntry->ForwardLink;
\r
1028 PrevEntry->ForwardLink->BackLink = NewEntry;
\r
1029 PrevEntry->ForwardLink = NewEntry;
\r
1034 Insert a new node entry before a designated node entry of a doubly linked list.
\r
1036 Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry
\r
1037 of the doubly linked list.
\r
1039 @param[in, out] PostEntry The entry to insert before.
\r
1040 @param[in, out] NewEntry The new entry to insert.
\r
1045 NetListInsertBefore (
\r
1046 IN OUT LIST_ENTRY *PostEntry,
\r
1047 IN OUT LIST_ENTRY *NewEntry
\r
1050 NewEntry->ForwardLink = PostEntry;
\r
1051 NewEntry->BackLink = PostEntry->BackLink;
\r
1052 PostEntry->BackLink->ForwardLink = NewEntry;
\r
1053 PostEntry->BackLink = NewEntry;
\r
1058 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
\r
1060 Initialize the forward and backward links of two head nodes donated by Map->Used
\r
1061 and Map->Recycled of two doubly linked lists.
\r
1062 Initializes the count of the <Key, Value> pairs in the netmap to zero.
\r
1064 If Map is NULL, then ASSERT().
\r
1065 If the address of Map->Used is NULL, then ASSERT().
\r
1066 If the address of Map->Recycled is NULl, then ASSERT().
\r
1068 @param[in, out] Map The netmap to initialize.
\r
1074 IN OUT NET_MAP *Map
\r
1077 ASSERT (Map != NULL);
\r
1079 InitializeListHead (&Map->Used);
\r
1080 InitializeListHead (&Map->Recycled);
\r
1086 To clean up the netmap, that is, release allocated memories.
\r
1088 Removes all nodes of the Used doubly linked list and free memory of all related netmap items.
\r
1089 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
\r
1090 The number of the <Key, Value> pairs in the netmap is set to be zero.
\r
1092 If Map is NULL, then ASSERT().
\r
1094 @param[in, out] Map The netmap to clean up.
\r
1100 IN OUT NET_MAP *Map
\r
1103 NET_MAP_ITEM *Item;
\r
1104 LIST_ENTRY *Entry;
\r
1107 ASSERT (Map != NULL);
\r
1109 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) {
\r
1110 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
\r
1112 RemoveEntryList (&Item->Link);
\r
1115 gBS->FreePool (Item);
\r
1118 ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used));
\r
1120 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) {
\r
1121 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
\r
1123 RemoveEntryList (&Item->Link);
\r
1124 gBS->FreePool (Item);
\r
1127 ASSERT (IsListEmpty (&Map->Recycled));
\r
1132 Test whether the netmap is empty and return true if it is.
\r
1134 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
\r
1136 If Map is NULL, then ASSERT().
\r
1139 @param[in] Map The net map to test.
\r
1141 @return TRUE if the netmap is empty, otherwise FALSE.
\r
1150 ASSERT (Map != NULL);
\r
1151 return (BOOLEAN) (Map->Count == 0);
\r
1156 Return the number of the <Key, Value> pairs in the netmap.
\r
1158 @param[in] Map The netmap to get the entry number.
\r
1160 @return The entry number in the netmap.
\r
1169 return Map->Count;
\r
1174 Return one allocated item.
\r
1176 If the Recycled doubly linked list of the netmap is empty, it will try to allocate
\r
1177 a batch of items if there are enough resources and add corresponding nodes to the begining
\r
1178 of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove
\r
1179 the fist node entry of the Recycled doubly linked list and return the corresponding item.
\r
1181 If Map is NULL, then ASSERT().
\r
1183 @param[in, out] Map The netmap to allocate item for.
\r
1185 @return The allocated item. If NULL, the
\r
1186 allocation failed due to resource limit.
\r
1191 IN OUT NET_MAP *Map
\r
1194 NET_MAP_ITEM *Item;
\r
1198 ASSERT (Map != NULL);
\r
1200 Head = &Map->Recycled;
\r
1202 if (IsListEmpty (Head)) {
\r
1203 for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) {
\r
1204 Item = AllocatePool (sizeof (NET_MAP_ITEM));
\r
1206 if (Item == NULL) {
\r
1214 InsertHeadList (Head, &Item->Link);
\r
1218 Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link);
\r
1219 NetListRemoveHead (Head);
\r
1226 Allocate an item to save the <Key, Value> pair to the head of the netmap.
\r
1228 Allocate an item to save the <Key, Value> pair and add corresponding node entry
\r
1229 to the beginning of the Used doubly linked list. The number of the <Key, Value>
\r
1230 pairs in the netmap increase by 1.
\r
1232 If Map is NULL, then ASSERT().
\r
1234 @param[in, out] Map The netmap to insert into.
\r
1235 @param[in] Key The user's key.
\r
1236 @param[in] Value The user's value for the key.
\r
1238 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
\r
1239 @retval EFI_SUCCESS The item is inserted to the head.
\r
1244 NetMapInsertHead (
\r
1245 IN OUT NET_MAP *Map,
\r
1247 IN VOID *Value OPTIONAL
\r
1250 NET_MAP_ITEM *Item;
\r
1252 ASSERT (Map != NULL);
\r
1254 Item = NetMapAllocItem (Map);
\r
1256 if (Item == NULL) {
\r
1257 return EFI_OUT_OF_RESOURCES;
\r
1261 Item->Value = Value;
\r
1262 InsertHeadList (&Map->Used, &Item->Link);
\r
1265 return EFI_SUCCESS;
\r
1270 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
\r
1272 Allocate an item to save the <Key, Value> pair and add corresponding node entry
\r
1273 to the tail of the Used doubly linked list. The number of the <Key, Value>
\r
1274 pairs in the netmap increase by 1.
\r
1276 If Map is NULL, then ASSERT().
\r
1278 @param[in, out] Map The netmap to insert into.
\r
1279 @param[in] Key The user's key.
\r
1280 @param[in] Value The user's value for the key.
\r
1282 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
\r
1283 @retval EFI_SUCCESS The item is inserted to the tail.
\r
1288 NetMapInsertTail (
\r
1289 IN OUT NET_MAP *Map,
\r
1291 IN VOID *Value OPTIONAL
\r
1294 NET_MAP_ITEM *Item;
\r
1296 ASSERT (Map != NULL);
\r
1298 Item = NetMapAllocItem (Map);
\r
1300 if (Item == NULL) {
\r
1301 return EFI_OUT_OF_RESOURCES;
\r
1305 Item->Value = Value;
\r
1306 InsertTailList (&Map->Used, &Item->Link);
\r
1310 return EFI_SUCCESS;
\r
1315 Check whether the item is in the Map and return TRUE if it is.
\r
1317 @param[in] Map The netmap to search within.
\r
1318 @param[in] Item The item to search.
\r
1320 @return TRUE if the item is in the netmap, otherwise FALSE.
\r
1326 IN NET_MAP_ITEM *Item
\r
1329 LIST_ENTRY *ListEntry;
\r
1331 NET_LIST_FOR_EACH (ListEntry, &Map->Used) {
\r
1332 if (ListEntry == &Item->Link) {
\r
1342 Find the key in the netmap and returns the point to the item contains the Key.
\r
1344 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
\r
1345 item with the key to search. It returns the point to the item contains the Key if found.
\r
1347 If Map is NULL, then ASSERT().
\r
1349 @param[in] Map The netmap to search within.
\r
1350 @param[in] Key The key to search.
\r
1352 @return The point to the item contains the Key, or NULL if Key isn't in the map.
\r
1362 LIST_ENTRY *Entry;
\r
1363 NET_MAP_ITEM *Item;
\r
1365 ASSERT (Map != NULL);
\r
1367 NET_LIST_FOR_EACH (Entry, &Map->Used) {
\r
1368 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
\r
1370 if (Item->Key == Key) {
\r
1380 Remove the node entry of the item from the netmap and return the key of the removed item.
\r
1382 Remove the node entry of the item from the Used doubly linked list of the netmap.
\r
1383 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
\r
1384 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
\r
1385 Value will point to the value of the item. It returns the key of the removed item.
\r
1387 If Map is NULL, then ASSERT().
\r
1388 If Item is NULL, then ASSERT().
\r
1389 if item in not in the netmap, then ASSERT().
\r
1391 @param[in, out] Map The netmap to remove the item from.
\r
1392 @param[in, out] Item The item to remove.
\r
1393 @param[out] Value The variable to receive the value if not NULL.
\r
1395 @return The key of the removed item.
\r
1400 NetMapRemoveItem (
\r
1401 IN OUT NET_MAP *Map,
\r
1402 IN OUT NET_MAP_ITEM *Item,
\r
1403 OUT VOID **Value OPTIONAL
\r
1406 ASSERT ((Map != NULL) && (Item != NULL));
\r
1407 ASSERT (NetItemInMap (Map, Item));
\r
1409 RemoveEntryList (&Item->Link);
\r
1411 InsertHeadList (&Map->Recycled, &Item->Link);
\r
1413 if (Value != NULL) {
\r
1414 *Value = Item->Value;
\r
1422 Remove the first node entry on the netmap and return the key of the removed item.
\r
1424 Remove the first node entry from the Used doubly linked list of the netmap.
\r
1425 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
\r
1426 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
\r
1427 parameter Value will point to the value of the item. It returns the key of the removed item.
\r
1429 If Map is NULL, then ASSERT().
\r
1430 If the Used doubly linked list is empty, then ASSERT().
\r
1432 @param[in, out] Map The netmap to remove the head from.
\r
1433 @param[out] Value The variable to receive the value if not NULL.
\r
1435 @return The key of the item removed.
\r
1440 NetMapRemoveHead (
\r
1441 IN OUT NET_MAP *Map,
\r
1442 OUT VOID **Value OPTIONAL
\r
1445 NET_MAP_ITEM *Item;
\r
1448 // Often, it indicates a programming error to remove
\r
1449 // the first entry in an empty list
\r
1451 ASSERT (Map && !IsListEmpty (&Map->Used));
\r
1453 Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link);
\r
1454 RemoveEntryList (&Item->Link);
\r
1456 InsertHeadList (&Map->Recycled, &Item->Link);
\r
1458 if (Value != NULL) {
\r
1459 *Value = Item->Value;
\r
1467 Remove the last node entry on the netmap and return the key of the removed item.
\r
1469 Remove the last node entry from the Used doubly linked list of the netmap.
\r
1470 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
\r
1471 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
\r
1472 parameter Value will point to the value of the item. It returns the key of the removed item.
\r
1474 If Map is NULL, then ASSERT().
\r
1475 If the Used doubly linked list is empty, then ASSERT().
\r
1477 @param[in, out] Map The netmap to remove the tail from.
\r
1478 @param[out] Value The variable to receive the value if not NULL.
\r
1480 @return The key of the item removed.
\r
1485 NetMapRemoveTail (
\r
1486 IN OUT NET_MAP *Map,
\r
1487 OUT VOID **Value OPTIONAL
\r
1490 NET_MAP_ITEM *Item;
\r
1493 // Often, it indicates a programming error to remove
\r
1494 // the last entry in an empty list
\r
1496 ASSERT (Map && !IsListEmpty (&Map->Used));
\r
1498 Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link);
\r
1499 RemoveEntryList (&Item->Link);
\r
1501 InsertHeadList (&Map->Recycled, &Item->Link);
\r
1503 if (Value != NULL) {
\r
1504 *Value = Item->Value;
\r
1512 Iterate through the netmap and call CallBack for each item.
\r
1514 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
\r
1515 from the loop. It returns the CallBack's last return value. This function is
\r
1516 delete safe for the current item.
\r
1518 If Map is NULL, then ASSERT().
\r
1519 If CallBack is NULL, then ASSERT().
\r
1521 @param[in] Map The Map to iterate through.
\r
1522 @param[in] CallBack The callback function to call for each item.
\r
1523 @param[in] Arg The opaque parameter to the callback.
\r
1525 @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item
\r
1526 return EFI_SUCCESS.
\r
1527 @retval Others It returns the CallBack's last return value.
\r
1534 IN NET_MAP_CALLBACK CallBack,
\r
1535 IN VOID *Arg OPTIONAL
\r
1539 LIST_ENTRY *Entry;
\r
1542 NET_MAP_ITEM *Item;
\r
1543 EFI_STATUS Result;
\r
1545 ASSERT ((Map != NULL) && (CallBack != NULL));
\r
1547 Head = &Map->Used;
\r
1549 if (IsListEmpty (Head)) {
\r
1550 return EFI_SUCCESS;
\r
1553 NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) {
\r
1554 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);
\r
1555 Result = CallBack (Map, Item, Arg);
\r
1557 if (EFI_ERROR (Result)) {
\r
1562 return EFI_SUCCESS;
\r
1567 This is the default unload handle for all the network drivers.
\r
1569 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
\r
1570 Uninstall all the protocols installed in the driver entry point.
\r
1572 @param[in] ImageHandle The drivers' driver image.
\r
1574 @retval EFI_SUCCESS The image is unloaded.
\r
1575 @retval Others Failed to unload the image.
\r
1580 NetLibDefaultUnload (
\r
1581 IN EFI_HANDLE ImageHandle
\r
1584 EFI_STATUS Status;
\r
1585 EFI_HANDLE *DeviceHandleBuffer;
\r
1586 UINTN DeviceHandleCount;
\r
1588 EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
\r
1589 EFI_COMPONENT_NAME_PROTOCOL *ComponentName;
\r
1590 EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2;
\r
1593 // Get the list of all the handles in the handle database.
\r
1594 // If there is an error getting the list, then the unload
\r
1595 // operation fails.
\r
1597 Status = gBS->LocateHandleBuffer (
\r
1601 &DeviceHandleCount,
\r
1602 &DeviceHandleBuffer
\r
1605 if (EFI_ERROR (Status)) {
\r
1610 // Disconnect the driver specified by ImageHandle from all
\r
1611 // the devices in the handle database.
\r
1613 for (Index = 0; Index < DeviceHandleCount; Index++) {
\r
1614 Status = gBS->DisconnectController (
\r
1615 DeviceHandleBuffer[Index],
\r
1622 // Uninstall all the protocols installed in the driver entry point
\r
1624 for (Index = 0; Index < DeviceHandleCount; Index++) {
\r
1625 Status = gBS->HandleProtocol (
\r
1626 DeviceHandleBuffer[Index],
\r
1627 &gEfiDriverBindingProtocolGuid,
\r
1628 (VOID **) &DriverBinding
\r
1631 if (EFI_ERROR (Status)) {
\r
1635 if (DriverBinding->ImageHandle != ImageHandle) {
\r
1639 gBS->UninstallProtocolInterface (
\r
1641 &gEfiDriverBindingProtocolGuid,
\r
1644 Status = gBS->HandleProtocol (
\r
1645 DeviceHandleBuffer[Index],
\r
1646 &gEfiComponentNameProtocolGuid,
\r
1647 (VOID **) &ComponentName
\r
1649 if (!EFI_ERROR (Status)) {
\r
1650 gBS->UninstallProtocolInterface (
\r
1652 &gEfiComponentNameProtocolGuid,
\r
1657 Status = gBS->HandleProtocol (
\r
1658 DeviceHandleBuffer[Index],
\r
1659 &gEfiComponentName2ProtocolGuid,
\r
1660 (VOID **) &ComponentName2
\r
1662 if (!EFI_ERROR (Status)) {
\r
1663 gBS->UninstallProtocolInterface (
\r
1665 &gEfiComponentName2ProtocolGuid,
\r
1672 // Free the buffer containing the list of handles from the handle database
\r
1674 if (DeviceHandleBuffer != NULL) {
\r
1675 gBS->FreePool (DeviceHandleBuffer);
\r
1678 return EFI_SUCCESS;
\r
1684 Create a child of the service that is identified by ServiceBindingGuid.
\r
1686 Get the ServiceBinding Protocol first, then use it to create a child.
\r
1688 If ServiceBindingGuid is NULL, then ASSERT().
\r
1689 If ChildHandle is NULL, then ASSERT().
\r
1691 @param[in] Controller The controller which has the service installed.
\r
1692 @param[in] Image The image handle used to open service.
\r
1693 @param[in] ServiceBindingGuid The service's Guid.
\r
1694 @param[in, out] ChildHandle The handle to receive the create child.
\r
1696 @retval EFI_SUCCESS The child is successfully created.
\r
1697 @retval Others Failed to create the child.
\r
1702 NetLibCreateServiceChild (
\r
1703 IN EFI_HANDLE Controller,
\r
1704 IN EFI_HANDLE Image,
\r
1705 IN EFI_GUID *ServiceBindingGuid,
\r
1706 IN OUT EFI_HANDLE *ChildHandle
\r
1709 EFI_STATUS Status;
\r
1710 EFI_SERVICE_BINDING_PROTOCOL *Service;
\r
1713 ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL));
\r
1716 // Get the ServiceBinding Protocol
\r
1718 Status = gBS->OpenProtocol (
\r
1720 ServiceBindingGuid,
\r
1721 (VOID **) &Service,
\r
1724 EFI_OPEN_PROTOCOL_GET_PROTOCOL
\r
1727 if (EFI_ERROR (Status)) {
\r
1734 Status = Service->CreateChild (Service, ChildHandle);
\r
1740 Destory a child of the service that is identified by ServiceBindingGuid.
\r
1742 Get the ServiceBinding Protocol first, then use it to destroy a child.
\r
1744 If ServiceBindingGuid is NULL, then ASSERT().
\r
1746 @param[in] Controller The controller which has the service installed.
\r
1747 @param[in] Image The image handle used to open service.
\r
1748 @param[in] ServiceBindingGuid The service's Guid.
\r
1749 @param[in] ChildHandle The child to destory.
\r
1751 @retval EFI_SUCCESS The child is successfully destoried.
\r
1752 @retval Others Failed to destory the child.
\r
1757 NetLibDestroyServiceChild (
\r
1758 IN EFI_HANDLE Controller,
\r
1759 IN EFI_HANDLE Image,
\r
1760 IN EFI_GUID *ServiceBindingGuid,
\r
1761 IN EFI_HANDLE ChildHandle
\r
1764 EFI_STATUS Status;
\r
1765 EFI_SERVICE_BINDING_PROTOCOL *Service;
\r
1767 ASSERT (ServiceBindingGuid != NULL);
\r
1770 // Get the ServiceBinding Protocol
\r
1772 Status = gBS->OpenProtocol (
\r
1774 ServiceBindingGuid,
\r
1775 (VOID **) &Service,
\r
1778 EFI_OPEN_PROTOCOL_GET_PROTOCOL
\r
1781 if (EFI_ERROR (Status)) {
\r
1786 // destory the child
\r
1788 Status = Service->DestroyChild (Service, ChildHandle);
\r
1793 Get handle with Simple Network Protocol installed on it.
\r
1795 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
\r
1796 If Simple Network Protocol is already installed on the ServiceHandle, the
\r
1797 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
\r
1798 try to find its parent handle with SNP installed.
\r
1800 @param[in] ServiceHandle The handle where network service binding protocols are
\r
1802 @param[out] Snp The pointer to store the address of the SNP instance.
\r
1803 This is an optional parameter that may be NULL.
\r
1805 @return The SNP handle, or NULL if not found.
\r
1810 NetLibGetSnpHandle (
\r
1811 IN EFI_HANDLE ServiceHandle,
\r
1812 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
\r
1815 EFI_STATUS Status;
\r
1816 EFI_SIMPLE_NETWORK_PROTOCOL *SnpInstance;
\r
1817 EFI_DEVICE_PATH_PROTOCOL *DevicePath;
\r
1818 EFI_HANDLE SnpHandle;
\r
1821 // Try to open SNP from ServiceHandle
\r
1823 SnpInstance = NULL;
\r
1824 Status = gBS->HandleProtocol (ServiceHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance);
\r
1825 if (!EFI_ERROR (Status)) {
\r
1826 if (Snp != NULL) {
\r
1827 *Snp = SnpInstance;
\r
1829 return ServiceHandle;
\r
1833 // Failed to open SNP, try to get SNP handle by LocateDevicePath()
\r
1835 DevicePath = DevicePathFromHandle (ServiceHandle);
\r
1836 if (DevicePath == NULL) {
\r
1841 Status = gBS->LocateDevicePath (&gEfiSimpleNetworkProtocolGuid, &DevicePath, &SnpHandle);
\r
1842 if (EFI_ERROR (Status)) {
\r
1844 // Failed to find SNP handle
\r
1849 Status = gBS->HandleProtocol (SnpHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance);
\r
1850 if (!EFI_ERROR (Status)) {
\r
1851 if (Snp != NULL) {
\r
1852 *Snp = SnpInstance;
\r
1861 Retrieve VLAN ID of a VLAN device handle.
\r
1863 Search VLAN device path node in Device Path of specified ServiceHandle and
\r
1864 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
\r
1865 is not a VLAN device handle, and 0 will be returned.
\r
1867 @param[in] ServiceHandle The handle where network service binding protocols are
\r
1870 @return VLAN ID of the device handle, or 0 if not a VLAN device.
\r
1876 IN EFI_HANDLE ServiceHandle
\r
1879 EFI_DEVICE_PATH_PROTOCOL *DevicePath;
\r
1880 EFI_DEVICE_PATH_PROTOCOL *Node;
\r
1882 DevicePath = DevicePathFromHandle (ServiceHandle);
\r
1883 if (DevicePath == NULL) {
\r
1887 Node = DevicePath;
\r
1888 while (!IsDevicePathEnd (Node)) {
\r
1889 if (Node->Type == MESSAGING_DEVICE_PATH && Node->SubType == MSG_VLAN_DP) {
\r
1890 return ((VLAN_DEVICE_PATH *) Node)->VlanId;
\r
1892 Node = NextDevicePathNode (Node);
\r
1899 Find VLAN device handle with specified VLAN ID.
\r
1901 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
\r
1902 This function will append VLAN device path node to the parent device path,
\r
1903 and then use LocateDevicePath() to find the correct VLAN device handle.
\r
1905 @param[in] ControllerHandle The handle where network service binding protocols are
\r
1907 @param[in] VlanId The configured VLAN ID for the VLAN device.
\r
1909 @return The VLAN device handle, or NULL if not found.
\r
1914 NetLibGetVlanHandle (
\r
1915 IN EFI_HANDLE ControllerHandle,
\r
1919 EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
\r
1920 EFI_DEVICE_PATH_PROTOCOL *VlanDevicePath;
\r
1921 EFI_DEVICE_PATH_PROTOCOL *DevicePath;
\r
1922 VLAN_DEVICE_PATH VlanNode;
\r
1923 EFI_HANDLE Handle;
\r
1925 ParentDevicePath = DevicePathFromHandle (ControllerHandle);
\r
1926 if (ParentDevicePath == NULL) {
\r
1931 // Construct VLAN device path
\r
1933 CopyMem (&VlanNode, &mNetVlanDevicePathTemplate, sizeof (VLAN_DEVICE_PATH));
\r
1934 VlanNode.VlanId = VlanId;
\r
1935 VlanDevicePath = AppendDevicePathNode (
\r
1937 (EFI_DEVICE_PATH_PROTOCOL *) &VlanNode
\r
1939 if (VlanDevicePath == NULL) {
\r
1944 // Find VLAN device handle
\r
1947 DevicePath = VlanDevicePath;
\r
1948 gBS->LocateDevicePath (
\r
1949 &gEfiDevicePathProtocolGuid,
\r
1953 if (!IsDevicePathEnd (DevicePath)) {
\r
1955 // Device path is not exactly match
\r
1960 FreePool (VlanDevicePath);
\r
1965 Get MAC address associated with the network service handle.
\r
1967 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
\r
1968 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
\r
1969 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
\r
1971 @param[in] ServiceHandle The handle where network service binding protocols are
\r
1973 @param[out] MacAddress The pointer to store the returned MAC address.
\r
1974 @param[out] AddressSize The length of returned MAC address.
\r
1976 @retval EFI_SUCCESS MAC address is returned successfully.
\r
1977 @retval Others Failed to get SNP mode data.
\r
1982 NetLibGetMacAddress (
\r
1983 IN EFI_HANDLE ServiceHandle,
\r
1984 OUT EFI_MAC_ADDRESS *MacAddress,
\r
1985 OUT UINTN *AddressSize
\r
1988 EFI_STATUS Status;
\r
1989 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;
\r
1990 EFI_SIMPLE_NETWORK_MODE *SnpMode;
\r
1991 EFI_SIMPLE_NETWORK_MODE SnpModeData;
\r
1992 EFI_MANAGED_NETWORK_PROTOCOL *Mnp;
\r
1993 EFI_SERVICE_BINDING_PROTOCOL *MnpSb;
\r
1994 EFI_HANDLE *SnpHandle;
\r
1995 EFI_HANDLE MnpChildHandle;
\r
1997 ASSERT (MacAddress != NULL);
\r
1998 ASSERT (AddressSize != NULL);
\r
2001 // Try to get SNP handle
\r
2004 SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp);
\r
2005 if (SnpHandle != NULL) {
\r
2007 // SNP found, use it directly
\r
2009 SnpMode = Snp->Mode;
\r
2012 // Failed to get SNP handle, try to get MAC address from MNP
\r
2014 MnpChildHandle = NULL;
\r
2015 Status = gBS->HandleProtocol (
\r
2017 &gEfiManagedNetworkServiceBindingProtocolGuid,
\r
2020 if (EFI_ERROR (Status)) {
\r
2025 // Create a MNP child
\r
2027 Status = MnpSb->CreateChild (MnpSb, &MnpChildHandle);
\r
2028 if (EFI_ERROR (Status)) {
\r
2033 // Open MNP protocol
\r
2035 Status = gBS->HandleProtocol (
\r
2037 &gEfiManagedNetworkProtocolGuid,
\r
2040 if (EFI_ERROR (Status)) {
\r
2045 // Try to get SNP mode from MNP
\r
2047 Status = Mnp->GetModeData (Mnp, NULL, &SnpModeData);
\r
2048 if (EFI_ERROR (Status)) {
\r
2051 SnpMode = &SnpModeData;
\r
2054 // Destroy the MNP child
\r
2056 MnpSb->DestroyChild (MnpSb, MnpChildHandle);
\r
2059 *AddressSize = SnpMode->HwAddressSize;
\r
2060 CopyMem (MacAddress->Addr, SnpMode->CurrentAddress.Addr, SnpMode->HwAddressSize);
\r
2062 return EFI_SUCCESS;
\r
2066 Convert MAC address of the NIC associated with specified Service Binding Handle
\r
2067 to a unicode string. Callers are responsible for freeing the string storage.
\r
2069 Locate simple network protocol associated with the Service Binding Handle and
\r
2070 get the mac address from SNP. Then convert the mac address into a unicode
\r
2071 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
\r
2072 Plus one unicode character for the null-terminator.
\r
2074 @param[in] ServiceHandle The handle where network service binding protocol is
\r
2076 @param[in] ImageHandle The image handle used to act as the agent handle to
\r
2077 get the simple network protocol.
\r
2078 @param[out] MacString The pointer to store the address of the string
\r
2079 representation of the mac address.
\r
2081 @retval EFI_SUCCESS Convert the mac address a unicode string successfully.
\r
2082 @retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
\r
2083 @retval Others Failed to open the simple network protocol.
\r
2088 NetLibGetMacString (
\r
2089 IN EFI_HANDLE ServiceHandle,
\r
2090 IN EFI_HANDLE ImageHandle,
\r
2091 OUT CHAR16 **MacString
\r
2094 EFI_STATUS Status;
\r
2095 EFI_MAC_ADDRESS MacAddress;
\r
2097 UINTN HwAddressSize;
\r
2102 ASSERT (MacString != NULL);
\r
2105 // Get MAC address of the network device
\r
2107 Status = NetLibGetMacAddress (ServiceHandle, &MacAddress, &HwAddressSize);
\r
2108 if (EFI_ERROR (Status)) {
\r
2113 // It takes 2 unicode characters to represent a 1 byte binary buffer.
\r
2114 // If VLAN is configured, it will need extra 5 characters like "\0005".
\r
2115 // Plus one unicode character for the null-terminator.
\r
2117 String = AllocateZeroPool ((2 * HwAddressSize + 5 + 1) * sizeof (CHAR16));
\r
2118 if (String == NULL) {
\r
2119 return EFI_OUT_OF_RESOURCES;
\r
2121 *MacString = String;
\r
2124 // Convert the MAC address into a unicode string.
\r
2126 HwAddress = &MacAddress.Addr[0];
\r
2127 for (Index = 0; Index < HwAddressSize; Index++) {
\r
2128 String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2);
\r
2132 // Append VLAN ID if any
\r
2134 VlanId = NetLibGetVlanId (ServiceHandle);
\r
2135 if (VlanId != 0) {
\r
2136 *String++ = L'\\';
\r
2137 String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, VlanId, 4);
\r
2141 // Null terminate the Unicode string
\r
2145 return EFI_SUCCESS;
\r
2149 Check the default address used by the IPv4 driver is static or dynamic (acquired
\r
2152 If the controller handle does not have the NIC Ip4 Config Protocol installed, the
\r
2153 default address is static. If the EFI variable to save the configuration is not found,
\r
2154 the default address is static. Otherwise, get the result from the EFI variable which
\r
2155 saving the configuration.
\r
2157 @param[in] Controller The controller handle which has the NIC Ip4 Config Protocol
\r
2158 relative with the default address to judge.
\r
2160 @retval TRUE If the default address is static.
\r
2161 @retval FALSE If the default address is acquired from DHCP.
\r
2165 NetLibDefaultAddressIsStatic (
\r
2166 IN EFI_HANDLE Controller
\r
2169 EFI_STATUS Status;
\r
2170 EFI_HII_CONFIG_ROUTING_PROTOCOL *HiiConfigRouting;
\r
2172 NIC_IP4_CONFIG_INFO *ConfigInfo;
\r
2174 EFI_STRING ConfigHdr;
\r
2175 EFI_STRING ConfigResp;
\r
2176 EFI_STRING AccessProgress;
\r
2177 EFI_STRING AccessResults;
\r
2178 EFI_STRING String;
\r
2180 ConfigInfo = NULL;
\r
2182 ConfigResp = NULL;
\r
2183 AccessProgress = NULL;
\r
2184 AccessResults = NULL;
\r
2187 Status = gBS->LocateProtocol (
\r
2188 &gEfiHiiConfigRoutingProtocolGuid,
\r
2190 (VOID **) &HiiConfigRouting
\r
2192 if (EFI_ERROR (Status)) {
\r
2197 // Construct config request string header
\r
2199 ConfigHdr = HiiConstructConfigHdr (&gEfiNicIp4ConfigVariableGuid, EFI_NIC_IP4_CONFIG_VARIABLE, Controller);
\r
2200 if (ConfigHdr == NULL) {
\r
2204 Len = StrLen (ConfigHdr);
\r
2205 ConfigResp = AllocateZeroPool ((Len + NIC_ITEM_CONFIG_SIZE * 2 + 100) * sizeof (CHAR16));
\r
2206 if (ConfigResp == NULL) {
\r
2209 StrCpy (ConfigResp, ConfigHdr);
\r
2211 String = ConfigResp + Len;
\r
2214 (8 + 4 + 7 + 4 + 1) * sizeof (CHAR16),
\r
2215 L"&OFFSET=%04X&WIDTH=%04X",
\r
2216 OFFSET_OF (NIC_IP4_CONFIG_INFO, Source),
\r
2220 Status = HiiConfigRouting->ExtractConfig (
\r
2226 if (EFI_ERROR (Status)) {
\r
2230 ConfigInfo = AllocateZeroPool (sizeof (NIC_ITEM_CONFIG_SIZE));
\r
2231 if (ConfigInfo == NULL) {
\r
2235 ConfigInfo->Source = IP4_CONFIG_SOURCE_STATIC;
\r
2236 Len = NIC_ITEM_CONFIG_SIZE;
\r
2237 Status = HiiConfigRouting->ConfigToBlock (
\r
2240 (UINT8 *) ConfigInfo,
\r
2244 if (EFI_ERROR (Status)) {
\r
2248 IsStatic = (BOOLEAN) (ConfigInfo->Source == IP4_CONFIG_SOURCE_STATIC);
\r
2252 if (AccessResults != NULL) {
\r
2253 FreePool (AccessResults);
\r
2255 if (ConfigInfo != NULL) {
\r
2256 FreePool (ConfigInfo);
\r
2258 if (ConfigResp != NULL) {
\r
2259 FreePool (ConfigResp);
\r
2261 if (ConfigHdr != NULL) {
\r
2262 FreePool (ConfigHdr);
\r
2269 Create an IPv4 device path node.
\r
2271 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
\r
2272 The header subtype of IPv4 device path node is MSG_IPv4_DP.
\r
2273 The length of the IPv4 device path node in bytes is 19.
\r
2274 Get other info from parameters to make up the whole IPv4 device path node.
\r
2276 @param[in, out] Node Pointer to the IPv4 device path node.
\r
2277 @param[in] Controller The controller handle.
\r
2278 @param[in] LocalIp The local IPv4 address.
\r
2279 @param[in] LocalPort The local port.
\r
2280 @param[in] RemoteIp The remote IPv4 address.
\r
2281 @param[in] RemotePort The remote port.
\r
2282 @param[in] Protocol The protocol type in the IP header.
\r
2283 @param[in] UseDefaultAddress Whether this instance is using default address or not.
\r
2288 NetLibCreateIPv4DPathNode (
\r
2289 IN OUT IPv4_DEVICE_PATH *Node,
\r
2290 IN EFI_HANDLE Controller,
\r
2291 IN IP4_ADDR LocalIp,
\r
2292 IN UINT16 LocalPort,
\r
2293 IN IP4_ADDR RemoteIp,
\r
2294 IN UINT16 RemotePort,
\r
2295 IN UINT16 Protocol,
\r
2296 IN BOOLEAN UseDefaultAddress
\r
2299 Node->Header.Type = MESSAGING_DEVICE_PATH;
\r
2300 Node->Header.SubType = MSG_IPv4_DP;
\r
2301 SetDevicePathNodeLength (&Node->Header, 19);
\r
2303 CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS));
\r
2304 CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS));
\r
2306 Node->LocalPort = LocalPort;
\r
2307 Node->RemotePort = RemotePort;
\r
2309 Node->Protocol = Protocol;
\r
2311 if (!UseDefaultAddress) {
\r
2312 Node->StaticIpAddress = TRUE;
\r
2314 Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller);
\r
2319 Create an IPv6 device path node.
\r
2321 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
\r
2322 The header subtype of IPv6 device path node is MSG_IPv6_DP.
\r
2323 Get other info from parameters to make up the whole IPv6 device path node.
\r
2325 @param[in, out] Node Pointer to the IPv6 device path node.
\r
2326 @param[in] Controller The controller handle.
\r
2327 @param[in] LocalIp The local IPv6 address.
\r
2328 @param[in] LocalPort The local port.
\r
2329 @param[in] RemoteIp The remote IPv6 address.
\r
2330 @param[in] RemotePort The remote port.
\r
2331 @param[in] Protocol The protocol type in the IP header.
\r
2336 NetLibCreateIPv6DPathNode (
\r
2337 IN OUT IPv6_DEVICE_PATH *Node,
\r
2338 IN EFI_HANDLE Controller,
\r
2339 IN EFI_IPv6_ADDRESS *LocalIp,
\r
2340 IN UINT16 LocalPort,
\r
2341 IN EFI_IPv6_ADDRESS *RemoteIp,
\r
2342 IN UINT16 RemotePort,
\r
2343 IN UINT16 Protocol
\r
2346 Node->Header.Type = MESSAGING_DEVICE_PATH;
\r
2347 Node->Header.SubType = MSG_IPv6_DP;
\r
2348 SetDevicePathNodeLength (&Node->Header, sizeof (IPv6_DEVICE_PATH));
\r
2350 CopyMem (&Node->LocalIpAddress, LocalIp, sizeof (EFI_IPv6_ADDRESS));
\r
2351 CopyMem (&Node->RemoteIpAddress, RemoteIp, sizeof (EFI_IPv6_ADDRESS));
\r
2353 Node->LocalPort = LocalPort;
\r
2354 Node->RemotePort = RemotePort;
\r
2356 Node->Protocol = Protocol;
\r
2357 Node->StaticIpAddress = FALSE;
\r
2361 Find the UNDI/SNP handle from controller and protocol GUID.
\r
2363 For example, IP will open a MNP child to transmit/receive
\r
2364 packets, when MNP is stopped, IP should also be stopped. IP
\r
2365 needs to find its own private data which is related the IP's
\r
2366 service binding instance that is install on UNDI/SNP handle.
\r
2367 Now, the controller is either a MNP or ARP child handle. But
\r
2368 IP opens these handle BY_DRIVER, use that info, we can get the
\r
2371 @param[in] Controller Then protocol handle to check.
\r
2372 @param[in] ProtocolGuid The protocol that is related with the handle.
\r
2374 @return The UNDI/SNP handle or NULL for errors.
\r
2379 NetLibGetNicHandle (
\r
2380 IN EFI_HANDLE Controller,
\r
2381 IN EFI_GUID *ProtocolGuid
\r
2384 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer;
\r
2385 EFI_HANDLE Handle;
\r
2386 EFI_STATUS Status;
\r
2390 Status = gBS->OpenProtocolInformation (
\r
2397 if (EFI_ERROR (Status)) {
\r
2403 for (Index = 0; Index < OpenCount; Index++) {
\r
2404 if ((OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) {
\r
2405 Handle = OpenBuffer[Index].ControllerHandle;
\r
2410 gBS->FreePool (OpenBuffer);
\r
2415 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
\r
2417 @param[in] String The pointer to the Ascii string.
\r
2418 @param[out] Ip4Address The pointer to the converted IPv4 address.
\r
2420 @retval EFI_SUCCESS Convert to IPv4 address successfully.
\r
2421 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
\r
2425 NetLibAsciiStrToIp4 (
\r
2426 IN CONST CHAR8 *String,
\r
2427 OUT EFI_IPv4_ADDRESS *Ip4Address
\r
2435 if ((String == NULL) || (Ip4Address == NULL)) {
\r
2436 return EFI_INVALID_PARAMETER;
\r
2439 Ip4Str = (CHAR8 *) String;
\r
2441 for (Index = 0; Index < 4; Index++) {
\r
2444 while ((*Ip4Str != '\0') && (*Ip4Str != '.')) {
\r
2449 // The IPv4 address is X.X.X.X
\r
2451 if (*Ip4Str == '.') {
\r
2453 return EFI_INVALID_PARAMETER;
\r
2457 return EFI_INVALID_PARAMETER;
\r
2461 NodeVal = AsciiStrDecimalToUintn (TempStr);
\r
2462 if (NodeVal > 0xFF) {
\r
2463 return EFI_INVALID_PARAMETER;
\r
2466 Ip4Address->Addr[Index] = (UINT8) NodeVal;
\r
2471 return EFI_SUCCESS;
\r
2476 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
\r
2477 string is defined in RFC 4291 - Text Pepresentation of Addresses.
\r
2479 @param[in] String The pointer to the Ascii string.
\r
2480 @param[out] Ip6Address The pointer to the converted IPv6 address.
\r
2482 @retval EFI_SUCCESS Convert to IPv6 address successfully.
\r
2483 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
\r
2487 NetLibAsciiStrToIp6 (
\r
2488 IN CONST CHAR8 *String,
\r
2489 OUT EFI_IPv6_ADDRESS *Ip6Address
\r
2497 UINT8 TailNodeCnt;
\r
2503 if ((String == NULL) || (Ip6Address == NULL)) {
\r
2504 return EFI_INVALID_PARAMETER;
\r
2507 Ip6Str = (CHAR8 *) String;
\r
2511 // An IPv6 address leading with : looks strange.
\r
2513 if (*Ip6Str == ':') {
\r
2514 if (*(Ip6Str + 1) != ':') {
\r
2515 return EFI_INVALID_PARAMETER;
\r
2521 ZeroMem (Ip6Address, sizeof (EFI_IPv6_ADDRESS));
\r
2528 for (Index = 0; (Index + 1) < 16; Index = (UINT8) (Index + 2)) {
\r
2531 while ((*Ip6Str != '\0') && (*Ip6Str != ':')) {
\r
2535 if ((*Ip6Str == '\0') && (Index != 14)) {
\r
2536 return EFI_INVALID_PARAMETER;
\r
2539 if (*Ip6Str == ':') {
\r
2540 if (*(Ip6Str + 1) == ':') {
\r
2541 if ((*(Ip6Str + 2) == '0') || (NodeCnt > 6)) {
\r
2543 // ::0 looks strange. report error to user.
\r
2545 return EFI_INVALID_PARAMETER;
\r
2549 // Skip the abbreviation part of IPv6 address.
\r
2551 TempStr2 = Ip6Str + 2;
\r
2552 while ((*TempStr2 != '\0')) {
\r
2553 if (*TempStr2 == ':') {
\r
2554 if (*(TempStr2 + 1) == ':') {
\r
2556 // :: can only appear once in IPv6 address.
\r
2558 return EFI_INVALID_PARAMETER;
\r
2562 if (TailNodeCnt >= (AllowedCnt - NodeCnt)) {
\r
2564 // :: indicates one or more groups of 16 bits of zeros.
\r
2566 return EFI_INVALID_PARAMETER;
\r
2576 Ip6Str = Ip6Str + 2;
\r
2580 if ((Short && (NodeCnt > 6)) || (!Short && (NodeCnt > 7))) {
\r
2582 // There are more than 8 groups of 16 bits of zeros.
\r
2584 return EFI_INVALID_PARAMETER;
\r
2590 // Convert the Str to IPv6 address.
\r
2592 NodeVal = AsciiStrHexToUintn (TempStr);
\r
2593 if ((NodeVal > 0xFFFF) || (Index > 14)) {
\r
2594 return EFI_INVALID_PARAMETER;
\r
2597 Ip6Address->Addr[Index] = (UINT8) (NodeVal >> 8);
\r
2598 Ip6Address->Addr[Index + 1] = (UINT8) (NodeVal & 0xFF);
\r
2601 // Skip the groups of zeros by ::
\r
2603 if (Short && Update) {
\r
2604 Index = (UINT8) (16 - (TailNodeCnt + 2) * 2);
\r
2609 if ((!Short && Index != 16) || (*Ip6Str != '\0')) {
\r
2610 return EFI_INVALID_PARAMETER;
\r
2613 return EFI_SUCCESS;
\r
2618 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
\r
2620 @param[in] String The pointer to the Ascii string.
\r
2621 @param[out] Ip4Address The pointer to the converted IPv4 address.
\r
2623 @retval EFI_SUCCESS Convert to IPv4 address successfully.
\r
2624 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
\r
2625 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
\r
2630 IN CONST CHAR16 *String,
\r
2631 OUT EFI_IPv4_ADDRESS *Ip4Address
\r
2635 EFI_STATUS Status;
\r
2637 if ((String == NULL) || (Ip4Address == NULL)) {
\r
2638 return EFI_INVALID_PARAMETER;
\r
2641 Ip4Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
\r
2642 if (Ip4Str == NULL) {
\r
2643 return EFI_OUT_OF_RESOURCES;
\r
2646 UnicodeStrToAsciiStr (String, Ip4Str);
\r
2648 Status = NetLibAsciiStrToIp4 (Ip4Str, Ip4Address);
\r
2650 FreePool (Ip4Str);
\r
2657 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
\r
2658 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
\r
2660 @param[in] String The pointer to the Ascii string.
\r
2661 @param[out] Ip6Address The pointer to the converted IPv6 address.
\r
2663 @retval EFI_SUCCESS Convert to IPv6 address successfully.
\r
2664 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
\r
2665 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
\r
2670 IN CONST CHAR16 *String,
\r
2671 OUT EFI_IPv6_ADDRESS *Ip6Address
\r
2675 EFI_STATUS Status;
\r
2677 if ((String == NULL) || (Ip6Address == NULL)) {
\r
2678 return EFI_INVALID_PARAMETER;
\r
2681 Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
\r
2682 if (Ip6Str == NULL) {
\r
2683 return EFI_OUT_OF_RESOURCES;
\r
2686 UnicodeStrToAsciiStr (String, Ip6Str);
\r
2688 Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address);
\r
2690 FreePool (Ip6Str);
\r
2696 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
\r
2697 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
\r
2698 Prefixes: ipv6-address/prefix-length.
\r
2700 @param[in] String The pointer to the Ascii string.
\r
2701 @param[out] Ip6Address The pointer to the converted IPv6 address.
\r
2702 @param[out] PrefixLength The pointer to the converted prefix length.
\r
2704 @retval EFI_SUCCESS Convert to IPv6 address successfully.
\r
2705 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL.
\r
2706 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource.
\r
2710 NetLibStrToIp6andPrefix (
\r
2711 IN CONST CHAR16 *String,
\r
2712 OUT EFI_IPv6_ADDRESS *Ip6Address,
\r
2713 OUT UINT8 *PrefixLength
\r
2719 EFI_STATUS Status;
\r
2722 if ((String == NULL) || (Ip6Address == NULL) || (PrefixLength == NULL)) {
\r
2723 return EFI_INVALID_PARAMETER;
\r
2726 Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8));
\r
2727 if (Ip6Str == NULL) {
\r
2728 return EFI_OUT_OF_RESOURCES;
\r
2731 UnicodeStrToAsciiStr (String, Ip6Str);
\r
2734 // Get the sub string describing prefix length.
\r
2737 while (*TempStr != '\0' && (*TempStr != '/')) {
\r
2741 if (*TempStr == '/') {
\r
2742 PrefixStr = TempStr + 1;
\r
2748 // Get the sub string describing IPv6 address and convert it.
\r
2752 Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address);
\r
2753 if (EFI_ERROR (Status)) {
\r
2758 // Convert the string to prefix length
\r
2761 if (PrefixStr != NULL) {
\r
2763 Status = EFI_INVALID_PARAMETER;
\r
2765 while (*PrefixStr != '\0') {
\r
2766 if (NET_IS_DIGIT (*PrefixStr)) {
\r
2767 Length = (UINT8) (Length * 10 + (*PrefixStr - '0'));
\r
2768 if (Length >= IP6_PREFIX_NUM) {
\r
2779 *PrefixLength = Length;
\r
2780 Status = EFI_SUCCESS;
\r
2784 FreePool (Ip6Str);
\r